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The principles of nonequilibrium thermodynamics are discussed, using the concept of internal variables that describe deviations
of a thermodynamic system from the equilibrium state. While considering the first law of thermodynamics, work of internal
variables is taken into account. It is shown that the requirement that the thermodynamic system cannot fulfil any work via internal
variables is equivalent to the conventional formulation of the second law of thermodynamics. These statements, in line with the
axioms introducing internal variables can be considered as basic principles of nonequilibrium thermodynamics.While considering
stationary nonequilibrium situations close to equilibrium, it is shown that known linear parities between thermodynamic forces
and fluxes and also the production of entropy, as a sum of products of thermodynamic forces and fluxes, are consequences of
fundamental principles of thermodynamics.

1. Introduction

The modern nonequilibrium thermodynamics is formulated
[1–3] as a generalisation of equilibrium thermodynamics, as
adding some concepts and principles, in particular, the con-
cepts of fluxes and thermodynamic forces, specific for non-
equilibrium. Despite many different approaches the problem,
reviewed recently by Muschik [4], the extension of equilib-
rium thermodynamics to non-equilibrium thermodynamics
seems to need some justification. We are going to follow
the approach [5, 6], which exploits additional variables, so-
called internal variables,1 to describe deviations of a state of
thermodynamic system from equilibrium. It can be thought,
that this approach allows one to explore the principles of non-
equilibrium thermodynamics, providing some justification of
the known linear relations and opens opportunities for non-
linear generalizations. We have to note that formulation of
the main principles of non-equilibrium thermodynamics in
terms of internal variables is disputable, there is, at least,
two explicit versions. In particular, one of the approaches [6]
takes into consideration only distinctive internal variables,
those that can be called [7] complexity internal variables. The
other approach, which is followed in this paper, considers all
quantities, which describe the deviation of the system from

the equilibrium, to be internal variables. In this paper, we are
trying to show advantages of our description [7] as compared
with the alternative formulation [4, 6].

Section 2 begins with a description of a set of variables
needed for the depiction of a non-equilibrium state of a ther-
modynamic system. Further, reproducing partly the previous
paper [7], we pay a special attention to formulation of the first
and secondprinciples of thermodynamics in terms of internal
variables. Dynamics of internal variables is discussed in
Section 3. Section 4 is devoted to consideration of stationary
states, while it is shown, that, in the areas close to equilibrium,
the known linear relation between thermodynamic forces
and fluxes and also expression for production of entropy, as a
sum of products of fluxes and thermodynamic forces, follow
the formulated general principles. Conclusion contains a dis-
cussion of the results.

2. The Main Concepts and Principles

Let us consider a thermodynamic system, the equilibrium
state of which, on definition, is characterized by absolute
temperature2 𝑇 and constitutive variables 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
. The

specified constitutive variables determine thermodynamic
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system and define its borders. In the simplest case, a volume
𝑉, which contains a certain part of substance in a gas or liquid
phase, is considered as a constitutive variable.

To define a nonequilibrium state of the same system, one
needs, apart from temperature (in this case the concept of
temperature ought to be discussed specially [6]) and consti-
tutive variables, in an indefinite number of other variables
𝜉
1
, 𝜉
2
, . . .. When a limited list of 𝑛 constitutive variables is

fixed, the other variables are called internal variables; in an
equilibrium situation there are no internal variables or, oth-
erwise, we can consider values of internal variables whatever
their set is, are equal to zero, which corresponds to the
agreement that the internal variables describe deviations of
the system from the equilibrium.3 The internal variables char-
acterize local heterogeneity of system and, consequently, can
be named as structural variables also. The thermodynamic
system has no predetermined set of internal parameters; they
arise, generally speaking, at any influence on the system and,
consequently, it is possible to note also that internal variables
in the system represent disappearing memory of the past
interactions with the environment.

Thus, the state space of a system is defined as (𝑇, 𝑥
1
,

𝑥
2
, . . . 𝑥
𝑛
; 𝜉
1
, 𝜉
2
. . .), where temperature 𝑇 is a unique char-

acteristic for both equilibrium and non-equilibrium, and
any space deviations from this quantity are considered as
internal variables. It is not the unique way of determining the
system, but it is convenient to adopt the listed variables for
the beginning. Under unchanging conditions, the thermody-
namic system is trending to a unique steady macrostate,
which is referred to as the equilibrium state. The trend of the
system to the equilibrium state means a trend of all internal
variables to zero values.

2.1. The First Principle of Thermodynamics. First of all, let us
consider the balance of all influences on the system. Taking
into account energy coming into the system with fluxes of
heat and matter from the environment, Δ𝑄 and Δ𝑁

𝑗
, and

work of the system4 through constitutive variables (work,
performed by the system, is considered positive), one can
write for a change of total energy 𝑈 of the system that

Δ𝑈 = Δ𝑄 −

𝑛

∑

𝑖=1

𝑋
𝑖
Δ𝑥
𝑖
+

𝑁

∑

𝑗=1

𝜇
𝑗
Δ𝑁
𝑗
. (1)

This is a conventional form of the balance of energy [4, 6].
In line with the total internal energy 𝑈, which includes

possible potential energy of agitated internal variables, inter-
nal thermal energy 𝐸, which does not depend on internal
variables, can be introduced [7]. In the equilibrium situations,
total energy 𝑈 coincides with internal energy 𝐸, but, in the
non-equilibrium situations, these quantities are different.5
Then, the law of conservation of energy (1) can be rewritten
in the form

Δ𝐸 = Δ𝑄 −

𝑛

∑

𝑖=1

𝑋
𝑖
Δ𝑥
𝑖
− ∑

𝑖

Ξ
𝑖
Δ𝜉
𝑖

+

𝑁

∑

𝑗=1

𝜇
𝑗
Δ𝑁
𝑗
,

(2)

where work of the system via internal variables is included.
This form of the first principle of thermodynamics demon-
strates, that the external influences (work via constitutive
variables, heat energy and chemical energy of particles) con-
tribute to a change of internal energy𝐸 and emerging of inter-
nal variables. It is important to take into account the processes
of reallocation of energy due to the work of the internal
variables in the explicit form.

2.2. The Second Principle of Thermodynamics. Thework con-
nected with the internal variables should be considered as an
essential element of the description. Internal variables can be
agitated by external influences, but the system cannot per-
form any positive work via internal variables, which means

∑

𝑖

Ξ
𝑖
Δ𝜉
𝑖
≤ 0. (3)

This statement, formulated earlier [7], introduces impossibil-
ity of the reversion of evolution of the thermodynamic system
in time and can be considered as a formulation of the second
principle of thermodynamics—the formulation, which is, as
it will be shown below, equivalent to the formulation of the
principle in terms of entropy (see Section 2.4).

2.3. The Introduction of Entropy. To define thermodynamic
quantities as functions of state, that is, functions of the tem-
perature and constitutive variables, one needs in the concept
of entropy with help of which a change of internal energy
𝐸, which does not depend on internal variables on the def-
inition, can be written as the total differential of variables of
state:

𝑑𝐸 = 𝑇𝑑𝑆 −

𝑛

∑

𝑖=1

𝑋
𝑖
𝑑𝑥
𝑖
. (4)

The relation is valid both for reversible and irreversible proc-
esses.

Entropy 𝑆 can be defined here, on a comparison of rela-
tions (2) and (4), as a quantity, a change of which is deter-
mined by external influences and internal changes:

𝑇𝑑𝑆 = Δ𝑄 − ∑

𝑖

Ξ
𝑖
Δ𝜉
𝑖
+

𝐾

∑

𝑗=1

𝜇
𝑗
Δ𝑁
𝑗
. (5)

Remarkably, when the external fluxes are absent, entropy,
in virtue of (5), can be considered as a function of internal
variables, whereas the change of entropy (5) can be consid-
ered as a total differential of the function. To calculate entropy
𝑆, in this case, one can consider process of changing of the
system from a nonequilibrium state with the fixed values of
variables 𝜉

1
, 𝜉
2
, . . . 𝜉
𝑠
to the equilibrium state. The result does

not depend on the way of integration, and the difference
between values of entropy in equilibrium and nonequilib-
rium states can be written symbolically as

𝑆 (𝑇, x, 𝜉) − 𝑆 (𝑇, x, 0)

= −
1

𝑇
∫

𝜉
1
,𝜉
2
,...𝜉
𝑠

0

∑

𝑗

Ξ
𝑗
𝑑𝜉
𝑗
≤ 0.

(6)
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Relation (6) can be considered as a definition of entropy of a
nonequilibrium state of thermodynamic system. The defini-
tion is applicable to any systems, including open systems in
situations far from equilibrium.

Note that relation (5) is a generalisation of Prigogine’s
relation, given by him for the systemswith chemical reactions
[1, Equation 3.52].6

2.4. Two Parts of the Entropy Variation. The total change of
entropy in the system 𝑑𝑆, defined by (5), can be split, due to
Prigogine [1], into two components:

𝑑𝑆 = 𝑑
𝑒
𝑆 + 𝑑
𝑖
𝑆. (7)

Change of Entropy due to the Fluxes. The component 𝑑
𝑒
𝑆

is connected with flows of heat and substances through the
boundaries of the system:

𝑑
𝑒
𝑆 =

1

𝑇
(Δ𝑄 +

𝑁

∑

𝑗=1

𝜇
𝑗
Δ𝑁
𝑗
) , (8)

where 𝑁
𝑗
is a number of molecules of substance 𝑗 in the

system, and 𝜇
𝑗
is a chemical potential. The quantity 𝑑

𝑒
𝑆 can

be both positive (the flux of heat and/or substances into the
system) andnegative (the flux of heat and/or substances out of
the system). In an isolated system, when there are neither heat
fluxes normatter fluxes between the systemand environment,
𝑑
𝑒
𝑆 = 0.
The fluxes of heat and substances into the system or from

the system appear at absence of balance between the system
and environment. As characteristic quantities, real streams
of heat and/or substances through borders of the system
are fixed. The actual fluxes into thermodynamic system are
specified by a problem under consideration, but, in any case,
it is possible to define empirically a set of fluxes 𝐽

1
, 𝐽
2
, . . . , 𝐽

𝑟

which, it is supposed, are given.
It is convenient towrite expression (8) for a change, due to

external fluxes into the system, of entropy in a standardized
form:

𝑑
𝑒
𝑆

𝑑𝑡
=

1

𝑇

𝑟

∑

𝑗=1

𝐾
𝑗
𝐽
𝑗
, (9)

where quantities 𝐾
𝑗
are characteristics of the system, that is,

functions of temperature, constitutive variable, and also inter-
nal variables.

Production of Entropy. The internal part of the change of
entropy 𝑑

𝑖
𝑆 is connected with some processes within the

system:

𝑑
𝑖
𝑆 = −

1

𝑇
∑

𝑗

Ξ
𝑗
Δ𝜉
𝑗
, 𝑑
𝑖
𝑆 ≥ 0. (10)

That means, that some internal variables, which cannot be
identified in advance and the number of which is not known,
appear to be agitated during transition from onemacroscopic
state to another and then relax according to their internal
laws. Under reversible processes, when the situation changes

in such a slow way (characteristic time of process 𝑡 ≫ charac-
teristic time of relaxation 𝜏

𝑖
), that all internal variables

actually have their equilibrium values, internal production of
entropy is equal to zero, 𝑑

𝑖
𝑆 = 0. By virtue of (3), the quantity

𝑑
𝑖
𝑆 can be only nonnegative, and this is a conventional

expression of the second law of thermodynamics.
From (10), expression for the production of entropy is as

follows:
𝑑
𝑖
𝑆

𝑑𝑡
= −

1

𝑇
∑

𝑗

Ξ
𝑗

𝑑𝜉
𝑗

𝑑𝑡
,

𝑑
𝑖
𝑆

𝑑𝑡
≥ 0. (11)

Entropy increases, when relaxation of internal variables in the
system occurs, so that the production of entropy is a manifes-
tation of presence of internal variables, that is a manifestation
of an internal complexity of the system.

3. Dynamics of Internal Variables

To move further, our speculations should be completed by
equations, which allow to determine evolution of internal
variables. Let us consider a system in a non-equilibrium state
(𝑇, x, 𝜉) and under external influences, which can be a change
of constitutive variables and/or a change of temperature and
concentration of substances in the environment. In the case of
reversible processes, the external influences are considered to
be weak, so that the changes of 𝑇 and x follow external influ-
ences. In a general case, to describe the actual situation, one
has to consider emerging and evolution of the internal vari-
ables, which are not influenced by the external forces directly.
As an example, we can point to a situation, when temperature
of the environment goes up and heat starts to get into the
thermodynamic system. In this situation, gradients of tem-
perature, that is, in our interpretation, internal variables are
emerging and internal processes appear; the system trends to
a new equilibrium, but the state of the system is determined
by a play between external influences and internal processes.
It is convenient to consider these contributions separately.

3.1. Preferable Values of Internal Variables. Under external
influences, the system is found to be, generally speaking, in a
non-equilibrium state, and for the description of the situa-
tion, one needs on introduction of some distinctive internal
variables 𝜉, as was explained, for example, by Kestin [8] and
Muschik [9]. A change of entropy of the system 𝑆(𝑇, x, 𝜉)
occurs due to changing of arguments of the function and,
apart from it, due to an incoming flux of entropy, that is, a
contribution defined by expression (9). Similar to the case of
isolated systems, when a maximum value of entropy defines
the equilibrium state, extreme value of entropy under the
presence of external influences defines special points in the
state space.These points are defined by a relation obtained by
equating total variation of entropy to zero:

𝜕𝑆

𝜕𝑇

𝑑𝑇

𝑑𝑡
+

𝜕𝑆

𝜕x
𝑑x
𝑑𝑡

+
𝜕𝑆

𝜕𝜉

𝑑𝜉

𝑑𝑡

+
1

𝑇

𝑟

∑

𝑗=1

𝐾
𝑗
(𝑇, x, 𝜉) 𝐽

𝑗
= 0.

(12)
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The incoming flux of entropy is different, generally speaking,
from the flux of entropy, coming out of the environment.

The relation (12) at given temperature, constitutive vari-
ables, and external fluxes can be considered as an equation for
unknown internal variables, which, in this case, determines
preferable values of internal variables 𝜉∘.

The rate of change of internal variables in a point of quasi-
equilibrium can be replaced by rate of change of preferable
variables (see (16)):

𝑑𝜉

𝑑𝑡

𝜉=𝜉∘
=

𝑑𝜉
∘

𝑑𝑡
. (13)

This allows, using also definition of thermodynamic force, to
write the equation for preferable values as

Ξ (𝜉
∘
)
𝑑𝜉
∘

𝑑𝑡
= 𝑇(

𝜕𝑆

𝜕𝑇

𝑑𝑇

𝑑𝑡
+

𝜕𝑆

𝜕x
𝑑x
𝑑𝑡

)

𝜉=𝜉
∘

+

𝑟

∑

𝑗=1

𝐾
𝑗
(𝑇, x, 𝜉∘) 𝐽

𝑗
.

(14)

The preferable values of internal variables, corresponding to
the actual values of other variables and external influence, are
determined, apparently, by history of the application of exter-
nal influences.

In general case, (14) cannot unambiguously define prefer-
able values. However, the situation is not so hopeless, when
considering special cases. If temperature and constitutive
variables of the system do not change and external influences
are given by constant fluxes of heat and substances into the
system 𝐽

1
, 𝐽
2
, . . . , 𝐽

𝑠
, it is possible to make some assumptions.

We consider, that each flux corresponds to the only one of the
internal variables, so that the number of distinctive preferable
variables is equal to the number of fluxes, that is, 𝜉∘

𝑙
̸= 0 at

𝑙 = 1, 2, . . . , 𝑠 and 𝜉
∘

𝑙
= 0 at 𝑙 = 𝑠 + 1, 𝑠 + 2, . . .. Taking also the

arbitrariness in the fluxes into account, (14) can be reduced to
a set of equations:

𝑑𝜉
∘

𝑖

𝑑𝑡
= 𝐵
𝑖
𝐽
𝑖
, 𝑖 = 1, 2, . . . , 𝑠. (15)

Values of factors 𝐵
𝑖
are settled by a choice of fluxes in

respect to a choice of internal variables. Quantities 𝐵
𝑖
have

only numerical values, when an “appropriate” choice of fluxes
in the form of 𝐽

𝑗
∼ 𝜉
𝑗
/𝜏
𝑗
, where 𝜏

𝑗
is a time of relaxation, has

beenmade. By a choice of the internal variables and the fluxes,
it is possible to reduce values 𝐵

𝑖
to units, which is accepted

further.

3.2. Evolution of Internal Variables. The actual values of the
internal variables 𝜉

1
, 𝜉
2
, . . . differ from the preferable values.

The deviations of internal variables from their current prefer-
able values 𝜉

𝑖
−𝜉
∘

𝑖
, (𝑖 = 1, 2, . . .) determine the trending of the

internal variables to a preferable values. The change of inter-
nal variables 𝜉

1
, 𝜉
2
, . . . is determined by internal laws ofmove-

ment of particles of the thermodynamic system, so that an

equation for a change of the internal variables can be written
in the general form:

𝑑 (𝜉
𝑖
− 𝜉
∘

𝑖
)

𝑑𝑡

= −𝑅
𝑖𝑗
(𝑇, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
; 𝜉
1
, 𝜉
2
, . . . ; 𝜉

∘

1
, 𝜉
∘

2
, . . .)

× (𝜉
𝑗
− 𝜉
∘

𝑗
) , 𝑖 = 1, 2, . . . .

(16)

This equation describes relaxation of internal variables to
preferable values 𝜉∘, which are defined by (14), in general
form, or, for the simple situation, by (15).The right-hand side
of (16) describes change of the variables, according to internal
laws of the system, the external influences are presented via
the preferable values. The sign “minus” is chosen for conve-
nience: matrix 𝑅

𝑖𝑗
in the situations close to equilibrium (at

𝜉
∘

𝑖
= 0, 𝑖 = 1, 2, . . .) is positive definite in many simple cases.7
Let us notice, that the internal variables are depending

generally on the space coordinates 𝜉
𝑖
= 𝜉
𝑖
(𝑡, 𝑥, 𝑦, 𝑧), so that

the equations for change of internal variables can contain
also terms (omitted here) for the description of processes
of diffusion of internal variables. Moreover, the equation of
evolution of internal variables should include random forces.
Each internal variable can be presented as a sumof the regular
(averaged in some way) and random components. Here the
regular components of variables are considered only. Discus-
sion of random components, also as well as fluctuations of
thermodynamic variables, is omitted. For expansion of the
description, it is possible to use the mathematical appara-
tus of stochastic nonlinear nonequilibrium thermodynamics
described by Stratonovich [10].

4. The Stationary Nonequilibrium States

The situation is being simplified in a steady-state case, when
a set of constant fluxes 𝐽

1
, 𝐽
2
, . . . , 𝐽

𝑠
is fixed. It is assumed

that the number of fluxes corresponds to the number of
complexity variables, which have distinctive constant values
𝜉
∘

1
, 𝜉
∘

2
, . . . , 𝜉

∘

𝑠
. Apart of it, an indefinite number of some other

internal variables 𝜉
𝑠+1

, 𝜉
𝑠+2

, . . . can appear, and thermody-
namic characteristics of the system are functions of the all
internal variables. The non-equilibrium stationary states of
thermodynamic system represent special interest, and it is
remarkable that these states, also as equilibrium states of the
thermodynamic systems, can be considered in a general way.

4.1. Dynamics of Internal Variables. To formulate the dynamic
equation for internal variables for a stationary state, we take
(16) with definition of the derivative of preferable variables
(15), in which the quantities 𝐵

𝑗
is settled to be equal unities.

This allows one to write the equation for dynamics of internal
variables near a steady-state point:

𝑑𝜉
𝑖

𝑑𝑡
= 𝐽
𝑖
− 𝑅
𝑖𝑙
(𝜉
𝑙
− 𝜉
∘

𝑙
) −

𝜕𝑅
𝑖𝑘

𝜕𝜉
𝑙

(𝜉
𝑘
− 𝜉
∘

𝑘
) (𝜉
𝑙
− 𝜉
∘

𝑙
) + ⋅ ⋅ ⋅ ,

𝑖 = 1, 2, . . . , 𝑠, 𝑠 + 1, 𝑠 + 2, . . . ,

(17)
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where amatrix𝑅
𝑖𝑙
and its derivatives are fixed in a considered

preferable point. The matrix 𝑅
𝑖𝑗
depends on temperature 𝑇

and constitutive variables 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
and assumed to be

positive definite, that is to have positive eigenvalues.8 Let us
remind, that the preferable state is defined in such a way, that
𝜉
∘

𝑙
̸= 0 at 𝑙 = 1, 2, . . . , 𝑠 and 𝜉

∘

𝑙
= 0 at 𝑙 = 𝑠 + 1, 𝑠 + 2, . . ..

In stationary state, values of preferable variables are con-
stant; however it is reached by balance of processes of relax-
ation and permanent excitation of internal variables by exter-
nal fluxes. Considering the processes of relaxation and excita-
tion in a stationary situation independent, instead of (17), one
can write two equations, in linear approximation:

𝑑𝜉
𝑖

𝑑𝑡
= −𝑅
𝑖𝑗
𝜉
𝑗
, 𝐽
𝑖
= −𝑅
𝑖𝑗

𝜉
∘

𝑗
, 𝑖 = 1, 2, . . . , 𝑠. (18)

The rate of change of internal variables 𝜉
𝑗
depends on

deviations of values of internal variables from the equilibrium
values, but preferable values 𝜉∘

𝑗
, which, on the assumption, are

close to 𝜉
𝑗
, are determined by fluxes. An analysis of an empir-

ical situation specifies the second set of equations from (18),
thus, establishing the set of internal complexity variables.

4.2. Entropy Near a Stationary State. In situations close to
equilibrium, an expansion of entropy into series with respect
to internal variables contains no terms of the first order, in the
simplest approach:

𝑆 (𝜉) = 𝑆 (0) −
1

2
∑

𝑖,𝑗

𝑆
𝑖𝑗

𝜉
𝑖
𝜉
𝑗
+ ⋅ ⋅ ⋅ ,

𝑆
𝑖𝑗

= −(
𝜕
2
𝑆

𝜕𝜉
𝑖
𝜕𝜉
𝑗

)

𝑇,x,𝜉 =0
.

(19)

By virtue of (6), value of entropy of the system in a non-
equilibrium state is less than value of entropy of the same
system in the equilibrium state, so that one has to consider
matrix S to be nonnegative determined. Components of the
matrix S are functions of temperature and constitutive vari-
ables.

An expansion of entropy of the thermodynamic system
near a preferable (stationary) point begins with linear terms:

𝑆 (𝜉) = 𝑆 (𝜉
∘
) −

𝑠

∑

𝑗=1

𝑆
𝑗
(𝜉
𝑗
− 𝜉
∘

𝑗
)

−
1

2
∑

𝑖,𝑗

𝑆
𝑖𝑗
(𝜉
𝑖
− 𝜉
∘

𝑖
) (𝜉
𝑗
− 𝜉
∘

𝑗
) + ⋅ ⋅ ⋅ ,

𝑆
𝑗
= −(

𝜕𝑆

𝜕𝜉
𝑗

)

𝑇,x,𝜉∘
, 𝑗 = 1, 2, . . . , 𝑠,

𝑆
𝑖𝑗

= −(
𝜕
2
𝑆

𝜕𝜉
𝑖
𝜕𝜉
𝑗

)

𝑇,x,𝜉∘
, 𝑖, 𝑗 = 1, 2, . . . .

(20)

It is taken into account that, apart from of the complexity
internal variables 𝜉

1
, 𝜉
2
, . . . , 𝜉

𝑠
, there is a set of internal

variables with numbers 𝑠+1, 𝑠+2, . . ., that describe deviations

of the system from the stationary state.Matrixes 𝑆
𝑗
and 𝑆
𝑙𝑘
are

calculated not in equilibrium point, as in expression (19), but
in the stationary point and depend, apart from temperature
and constitutive variables, on the complexity internal vari-
ables.

As a function of the internal complexity variables, entropy
has no features, which would allow to characterize the sta-
tionary state. Considering the variables of complexity to be
fixed, expansion of entropy, as a function of all other possible
internal variables, is reduced to a form:

𝑆 (𝜉) = 𝑆 (𝜉
∘
) −

1

2

∞

∑

𝑖,𝑗=𝑠+1

𝑆
𝑖𝑗
𝜉
𝑖
𝜉
𝑗
+ ⋅ ⋅ ⋅ ,

𝑆
𝑖𝑗

= −(
𝜕
2
𝑆

𝜕𝜉
𝑖
𝜕𝜉
𝑗

)

𝑇,x,𝜉∘
𝑖, 𝑗 = 𝑠 + 1, 𝑠 + 2, . . . .

(21)

It is assumed that a stationary state of thermody-
namic system near the equilibrium state is steady, so that
matrix 𝑆

𝑙𝑘
(𝜉
∘

1
, 𝜉
∘

2
, . . . , 𝜉

∘

𝑠
) in expression (21) is positive definite;

entropy, as a function of internal variables, in the fixed sta-
tionary state has amaximum.The properties ofmatrix 𝑆

𝑙𝑘
in a

stationary point, which is far from equilibrium, remain not
certain.

Relation (21) allows us to write an expression for thermo-
dynamic forces in a point near the stationary state:

Ξ
𝑗
(𝜉) = −𝑇

𝜕𝑆

𝜕𝜉
𝑗

= Ξ
𝑗
(𝜉
∘
)

+ 𝑇𝑆
𝑗𝑙
(𝜉
𝑙
− 𝜉
∘

𝑙
) + ⋅ ⋅ ⋅ , 𝑗 = 1, 2, . . . , 𝑠.

(22)

The first terms of the expansion of the thermodynamic
forces are constant. In the situations close to the equilibrium
state, in the simplest approach, thermodynamic forces are
connected linearly with internal variables:

Ξ
𝑗
= −𝑇

𝜕𝑆

𝜕𝜉
𝑗

= 𝑇𝑆
𝑗𝑘
𝜉
𝑘
+ ⋅ ⋅ ⋅ . (23)

Let us remember that, in the state of equilibrium, values of
internal variables are considered to be zero, and thermody-
namic forces Ξ

𝑗
disappear.

4.3. Production of Entropy. In a stationary nonequilibrium
state, values of temperature and all constitutive variables of
the thermodynamic system are constant. Values of thermo-
dynamic functions of system, including entropy, also are con-
stant; however, there is production of entropy inside the sys-
tem and corresponding decrease in entropy of the system, due
to fluxes of heat and/or substances, so that one can write

𝑑
𝑖
𝑆

𝑑𝑡
= −

𝑑
𝑒
𝑆

𝑑𝑡
. (24)
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Equations (17) and (22) allow us to write an expansion
of function of production of entropy (11) near a steady-state
point:

𝑑
𝑖
𝑆

𝑑𝑡
= −

1

𝑇

𝑠

∑

𝑗=1

Ξ
𝑖
𝐽
𝑖

+
1

𝑇

𝑠

∑

𝑗,𝑙=1

(−𝑇𝑆
𝑗𝑙
𝐽
𝑗
+ Ξ
𝑗
𝑅
𝑗𝑙
) (𝜉
𝑙
− 𝜉
∘

𝑙
)

+

𝑠

∑

𝑗,𝑘,𝑙=1

(𝑆
𝑗𝑘
𝑅
𝑗𝑙

+ Ξ
𝑗

𝜕𝑅
𝑗𝑘

𝜕𝜉
𝑙

) (𝜉
𝑘
− 𝜉
∘

𝑘
) (𝜉
𝑙
− 𝜉
∘

𝑙
)

+

∞

∑

𝑗,𝑘,𝑙=𝑠+1

𝑆
𝑗𝑘
𝑅
𝑗𝑙
𝜉
𝑘
𝜉
𝑙
+ ⋅ ⋅ ⋅ .

(25)

Values of all matrixes are determined in the considered
steady-state point 𝜉∘

1
, 𝜉
∘

2
, . . . , 𝜉

∘

𝑠
.

In the simplest approximation, expression for production
of entropy can be written as

𝑑
𝑖
𝑆

𝑑𝑡
= −

1

𝑇

𝑠

∑

𝑗=1

Ξ
𝑗
𝐽
𝑗
. (26)

This expression represents production of entropy in the
conventional form as the sum of products of fluxes and
thermodynamic forces. Equation (26) is considered as one of
the basic statements of nonequilibrium thermodynamics [1–
3].The emerging of the sign “minus” in expression (26) is con-
nected with the fact that signs of the fluxes are taken opposite
to signs of the forces (the internal variables). One can note,
that representation (26) is valid only for steady-state situa-
tions and for small deviations from equilibrium state.

Comparison of (9) and (26) for a stationary state, when
relation (24) is valid, determines that quantity𝐾

𝑗
in (9) coin-

cides with thermodynamic force, 𝐾
𝑖
= Ξ
𝑖
, 𝑖 = 1, 2, . . . , 𝑠.

4.4. On the Criterion of Stability of Stationary States. Expres-
sion (25) shows that, in a steady-state point, production of
entropy, as a function of the internal variables of complexity,
has no peculiar points. However, if the steady-state point is
fixed (𝜉

𝑙
= 𝜉
∘

𝑙
, 𝑙 = 1, 2, . . . 𝑠), expression (25) takes the form

𝑑
𝑖
𝑆

𝑑𝑡
= −

1

𝑇

𝑠

∑

𝑗=1

Ξ
𝑖
𝐽
𝑖
+

∞

∑

𝑗,𝑘,𝑙=𝑠+1

𝑆
𝑗𝑘
𝑅
𝑗𝑙
𝜉
𝑘
𝜉
𝑙
+ ⋅ ⋅ ⋅ . (27)

The behaviour of production of entropy in vicinity of a
steady-state point is determined by terms of the second order
with respect to all internal variables, excepting the complexity
variables. The terms of the second order comprise a square
formwith thematrix that is a product of twomatrixes𝑅

𝑗𝑘
and

𝑆
𝑙𝑘
, which are calculated in the steady-state point and depend,

apart from temperature and constitutive variables, on the
complexity internal variables. In the equilibrium point and,
assumingly, in the steady-state points near to the equilibrium
state the matrixes are positive definite, so that production
of entropy has a minimum, which confirms the validity of

the Prigogine’s principle of a minimum of production of
entropy [1–3]. In the points, that are far from the equilibrium
point, the matrixes 𝑅

𝑗𝑘
and 𝑆

𝑙𝑘
are not necessarily positive

definite, so that stability of the system can be connected with
a maximum of production of entropy, as it is stated by some
investigators [11, 12].

4.5. The Relation between Fluxes and Thermodynamic Forces.
Now, with help of (18) and (23), we can write expression (26)
for production of entropy in other form as

1

𝑇

𝑠

∑

𝑗,𝑘=1

Ξ
𝑗
𝑅
𝑗𝑘
𝜉
𝑘
= −

𝑠

∑

𝑗,𝑘=1

𝑆
𝑗𝑘
𝜉
𝑘
𝐽
𝑗
. (28)

The written equation, by virtue of the supposed arbitrari-
ness and independence of internal variables, is followed by a
relation between fluxes and thermodynamic forces:

1

𝑇

𝑠

∑

𝑗=1

Ξ
𝑗
𝑅
𝑗𝑘

= −

𝑠

∑

𝑗=1

𝑆
𝑗𝑘
𝐽
𝑗
. (29)

This relation can be rewritten as

𝐽
𝑖
= −𝐿
𝑖𝑘
Ξ
𝑘
, 𝐿

𝑖𝑘
=

1

𝑇
𝑅
𝑖𝑙
𝑆
−1

𝑙𝑘
. (30)

Considering linear approach, the components ofmatrixes𝑅
𝑗𝑘

and 𝑆
𝑙𝑘
are constants, but in more general case it is necessary

to consider them as functions of internal variables. By virtue
of definition, the matrix L is positive definite.

The relation between fluxes and thermodynamic forces
in linear approximation are fundamental relation of the
nonequilibrium thermodynamics [1–3]. We have shown that
these parities are consequence of the main principles of ther-
modynamics and valid under two conditions: first, deviations
from an equilibrium state are small, and second, the state is
stationary.

Let us note in addition that there is a statement [1–3] for
the matrix L to be symmetric or antisymmetric:

𝐿
𝑖𝑗

= ±𝐿
𝑗𝑖
. (31)

For the proof of this statement, to which usually refer as to
Onsager principle, one has to address the other principles and
some assumptions considered in the following section.

4.6. Symmetry of Kinetic Coefficients. The proof of the sym-
metry of kinetic coefficients is based on the property of
invariance of correlations of fluctuations of various quantities
with respect to reversion of time, which is fair for equilibrium
situations [1–3, 13]. Being interested in stationary states, it
is possible to consider fluctuations of internal variables near
their stationary values and to assume that time correlations
of random deviations of internal variables also are invariant
with respect to reversion of time. In other words, for correla-
tions of various quantities, it is possible to write a relation

⟨(𝜉
𝑖
− 𝜉
∘

𝑖
)
𝑡
(𝜉
𝑘
− 𝜉
∘

𝑘
)
0
⟩

= ± ⟨(𝜉
𝑘
− 𝜉
∘

𝑘
)
𝑡
(𝜉
𝑖
− 𝜉
∘

𝑖
)
0
⟩ .

(32)
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The “minus” sign arises in the case, when the internal variable
itself changes the sign at the reversion of time.

Further, one can take advantage of the equation of evolu-
tion (16), which, with use of expression for thermodynamic
force (22) and definition of a matrix of kinetic coefficients
(30), can be presented in the form

𝑑 (𝜉
𝑖
− 𝜉
∘

𝑖
)

𝑑𝑡
= −𝐿
𝑖𝑙
(Ξ
𝑙
(𝜉) − Ξ

𝑙
(𝜉
∘
)) . (33)

This equation allows one, after differentiation of relation (32),
to write down

𝐿
𝑖𝑙
⟨(Ξ
𝑙
(𝜉) − Ξ

𝑙
(𝜉
∘
)) (𝜉
𝑘
− 𝜉
∘

𝑘
)
0
⟩

= ±𝐿
𝑘𝑙

⟨(Ξ
𝑙
(𝜉) − Ξ

𝑙
(𝜉
∘
)) (𝜉
𝑖
− 𝜉
∘

𝑖
)
0
⟩ .

(34)

By virtue of supposed independence of deviations of various
variables from stationary values, the required relation (31)
follows the equation written previously.

Expansion of the principle of invariance of correlations
with respect to reversion of time for stationary situations
allows proving the principle of symmetry of kinetic coeffi-
cients.

4.7. A Simple Example. Let us consider a portion of matter
in a small volume Δ𝑥Δ𝑦Δ𝑧 as a thermodynamic system. In
addition to the cases, when a stationary state is maintained
by fluxes of heat and particles separately [7], let us consider
the simultaneous action of these factors. We can assume that
streams of heat and a substance are moving along the 𝑥-axis,
so that

𝐽T =
1

Δ𝑦Δ𝑧

Δ𝑄

Δ𝑡
, 𝐽C =

1

Δ𝑦Δ𝑧

Δ𝑚

Δ𝑡
. (35)

The fluxes of heat and substance are contributing indepen-
dently in the entropy of the volume. The flux of heat, accord-
ing to (8), determines the change of density of entropy in the
volume:

𝑑heat𝑆

𝑑𝑡
=

1

Δ𝑥
(
𝐽T

𝑇
−

𝐽T

𝑇 + Δ𝑇
) ≈

𝐽T

𝑇2
∇
𝑥
𝑇. (36)

In a similar way, one can define the change of density of
entropy due to the flux of the substance:

𝑑subs𝑆

𝑑𝑡
=

𝐽C

𝑇

𝜇 (𝑐 + Δ𝑐) − 𝜇 (𝑐)

Δ𝑥
≈

𝐽C

𝑇

𝜕𝜇

𝜕𝑐
∇
𝑥
𝑐. (37)

The system is assumed to be characterised by chemical poten-
tial 𝜇(𝑐), which depends on concentration 𝑐.

It is convenient to introduce special symbols for the gradi-
ents of temperature and concentration, which can be consid-
ered to be internal complexity variables:

𝜉T = ∇
𝑥
𝑇 =

Δ𝑇

Δ𝑥
, 𝜉C = ∇

𝑥
𝑐 =

Δ𝑐

Δ𝑥
. (38)

Thus, the change of density of entropy, due to the external
fluxes of heat and substance, can be written as follows:

𝑑
𝑒
𝑆

𝑑𝑡
=

𝐽T

𝑇2
𝜉T +

𝐽C

𝑇

𝜕𝜇

𝜕𝑐
𝜉C. (39)

The fluxes and gradients are connected with each other
locally. It is well known [1–3], as an empirical fact, that, at
simultaneous presence of the thermal anddiffusion gradients,
𝜉T and 𝜉C cross-effects are observed; a gradient of tempera-
ture induces a flux of the substance and vice versa, a gradient
of concentration induces a flux of heat, so that according to
the last equation from (18), we record a linear parity connect-
ing the fluxes and gradients for the considered system:

𝐽T = −𝑅TT𝜉T − 𝑅TC𝜉C,

𝐽C = −𝑅CT𝜉T − 𝑅CC𝜉C.

(40)

These equations allow one to write the internal production of
entropy, according to (26), in the form

𝑑
𝑖
𝑆

𝑑𝑡
=

1

𝑇
[(𝑅TT𝜉T + 𝑅TC𝜉C) ΞT

+ (𝑅CT𝜉T + 𝑅CC𝜉C) ΞC] .

(41)

In a steady-state situation, the thermodynamic state of
the system does not change, so that (24) is valid, and taking
relation (39) into account, one has another expression for pro-
duction of entropy:

𝑑
𝑖
𝑆

𝑑𝑡
= −

𝐽T

𝑇2
𝜉T −

𝐽C

𝑇

𝜕𝜇

𝜕𝑐
𝜉C. (42)

Comparing (41) and (42), one finds the relations between
fluxes and thermodynamic forces for a stationary case:

𝐽T = − 𝑇 (𝑅TTΞT + 𝑅CTΞC) ,

𝐽C = − (
𝜕𝜇

𝜕𝑐
)

−1

(𝑅TCΞT + 𝑅CCΞC) .

(43)

The condition of symmetry of kinetic coefficients (31) is fol-
lowed by an equation:

1

𝑇
𝑅TC =

𝜕𝜇

𝜕𝑐
𝑅CT. (44)

Entropy of the system is defined by formula (6), which, in
considered case, takes the form

𝑆 − 𝑆
0
= −

1

𝑇
∫

∇
𝑥
𝑇

0

∫

∇
𝑥
𝑐

0

(ΞT𝑑𝜉T + ΞC𝑑𝜉C) . (45)

The thermodynamic forces ΞT and ΞC, as functions of com-
plexity variables, can be found from (40) and (43). After the
calculation of the integrals, one gets a simple formula for
entropy as a function of internal variables:

𝑆 − 𝑆
0
= −

1

2𝑇
(

1

𝑇
(∇
𝑥
𝑇)
2

+
𝜕𝜇

𝜕𝑐
(∇
𝑥
𝑐)
2

) . (46)

It is remarkable that the condition of integrability and exis-
tence of entropy of the system appears to be identical toOnsa-
ger’s relation, that is, equality of the nondiagonal components
of a matrix in (43).
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5. Conclusion

The usage of internal variables, playing a distinctive role in
the description of nonequilibrium states of the system, allows
us to develop a generalized view on the principle of non-
equilibrium thermodynamics. In this paper, in line with the
paper [7], the author aspired to show that the thermodynam-
ics of nonequilibrium states could be formulated so consis-
tently, as the thermodynamics of equilibrium states. At least,
considering the situations close to equilibrium and using
the simplest approach, we have obtained the fundamental
relations of non-equilibrium thermodynamics. One can note
the most essential features of our description.

(i) The reference to local equilibrium is not used. On
the contrary, it is supposed, that local nonequilibrium
exists. A set of internal variables 𝜉

1
, 𝜉
2
, . . . are intro-

duced to describe deviation of the system from equi-
librium.

(ii) While formulating the law of conservation of energy,
the work connected with internal variables is consid-
ered, thus, one has to distinguish between the total
internal energy𝑈(𝑇, x, 𝜉) and internal thermal energy
𝐸(𝑇, x) of the system. It allows to introduce entropy
𝑆 for non-equilibrium states of thermodynamic sys-
tem by (4), which keeps the meaning of entropy
unchanged. As a consequence of this, temperature
in any situation is defined through thermodynamic
functions of the system as 𝑇 = (𝜕𝐸/𝜕𝑆)x or 𝑇 =

(𝜕𝑈/𝜕𝑆)x,𝜉 .
(iii) The second principle of thermodynamics may be for-

mulated as impossibility of fulfilment of positive work
by internal variables (Section 2.3).This formulation is
equivalent to conventional formulations but excludes
a flavour of mystique from concept of entropy.

(iv) Relation (5), that connects a change of entropy of
a thermodynamic system with fluxes of heat and
substance and also with change of internal variables,
is valid for the cases of open systems and irreversible
processes. It is a generalisation of Prigogine’s relation,
given by him for the systems with chemical reactions
[1, Equation 3.52].

(v) The known linear relations of nonequilibrium ther-
modynamics (in particular, the parity between forces
and the fluxes) follow from the general principles
for the cases of steady-state processes running in the
region of small deviations from equilibrium.

One can see that all known results of linear non-equilib-
rium thermodynamics follow the presented approach; how-
ever, the theory is open for nonlinear generalisations.

Endnotes

1. Perhaps, the first who used internal variables for the
consecutive formulation of thermodynamics was Leon-
tovich [5]. The first Russian edition of “Introduction to
Thermodynamics,” based on his prewar- and war-time
lectures, has appeared, as a separate book, in 1950.

2. Temperature is usuallymeasured in degrees, but, accord-
ing to relationship with other physical quantities, it is
energy. To omit the factor of transition from degrees to
energy, it is convenient to agree that the absolute temper-
ature 𝑇 is measured in energy units as it was proposed
by Landau and Lifshitz [13] and used here through the
paper.

3. We do not include here into consideration the fluctu-
ations in thermodynamic systems (local deviations of
density, temperatures, concentration of substances, and
other quantities from equilibrium values) which can be
treated as huge number of uncontrollable internal vari-
ables.

4. In nonequilibrium situations, work of the system is not
equal to the work of the environment on the system [14].
To balance the inner andouter forces, one needs, as it was
shown by Gujrati [14], in some internal variables.

5. The alternative theory [4, 6] of non-equilibrium in terms
of internal variables does not distinguish between the
total and internal energies, thus, misinterpreting the role
of internal variables.

6. The definition of entropy in the alternative theory [4, 6]
of non-equilibrium in terms of internal variables does
not include fluxes of substances (the last term in (5)),
thus, failing to reproduce the Prigogine’s result. More-
over, one needs in the omitted term to consider the proc-
esses of diffusion correctly, as was discussed earlier [7].

7. There are many important exclusions from this rule. A
description of thermodynamic systems with oscillating
chemical reactions, for example, requires matrix 𝑅

𝑖𝑗
not

to be positive definite.

8. It is known, that such combination (transformation) of
variables can be chosen that the equation of dynamics
(16) for these variables gets the form of the equation of a
relaxation:

𝑑𝜉
𝑖

𝑑𝑡
= −

1

𝜏
𝑖

𝜉
𝑗
, 𝑖 = 1, 2, . . . , 𝑠, (47)

where 𝜏
𝑖
= 𝜏
𝑖
(𝑇, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) is a time of relaxation of

corresponding variable. Changing under internal laws of
the movement, the agitated internal variables trend to
their unique equilibrium value, so that the system is
moving to its equilibrium state.
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