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EQUATIONS OF MOTION OF VISCOELASTIC SYSTEMS
AS DERIVED FROM THE CONSERVATION LAWS AND
THE PHENOMENOLOGICAL THEORY OF
NONEQUILIBRIUM PROCESSES

V. N. Pokrovskii UDC 678:539.376

The system of equations of motion for a liquid and a solid with internal parameters —
scalars and second~order tensors —is written out in the linear approximation. From the
system of equations for the class of motions with velocity gradients independent of the co-
ordinates there follows the known equation of the linear theory of viscoelasticity. It is
shown that the correct description of the motions of polymer systems requires a quadratic
approximation. A nonlinear variant of the theory of viscoelasticity, in which spectral func-
tions that depend on the internal parameters are introduced, is proposed.

The dynamic properties of polymeric systems are associated with the relaxation processes that
accompany deformation of the system and, accordingly, a natural phvsical basis for the development of
phenomenological theories of the motion of viscoelastic systems is provided by the theory of nonequilib-
rium processes, which makes use of an important assumption, going back to Mandel'shtam and Leontovich
[1], concerning the existence of certain internal parameters describing the deviation of the system from
equilibrium and, together with the thermodynamic parameters, characterizing its state. Many authors [2]
have discussed the theory of viscoelasticity from this standpoint, but, since it is necessary to make an
aprioriassumption concerning the number and tensor dimensionality of the internal parameters, the
phenomenological equations of motion of viscoelastic systems cannot be formulated in such general form
as, for example, the equations of motion of a viscous fluid. In particular, as a rule, the investigation is
confined to the case when all the internal parameters are scalars [2], which does not apply to the systems of
of interest to us. Below, on the basis of the theory of nonequilibrium processes [2] a phenomenological
theory of viscoelasticity is progressively developed in a form suitable for describing the motion of poly-
meric systems.

1. In order to clarify the physical significance of the relaxation processes accompanying deforma-
tion and determine the nature of the internal variables, it is necessary to consider the results of the struc-
tural theories of motion of polymeric systems.

A dilute polymer solution can be simulated by a suspension of ideally flexible strings of identical,
equally spaced beads moving in a liguid with viscosity 1. An elasticity force acts between adjacent beads,
and in motioa each bead experiences hydrodynamic resistance, so that it is possible to introduce the bead
friction coefficient ¢. It has been shown [37] that the stress tensor of the suspension has the form

1
- (Coi*pa™> = {0:*pE"Do), 1.1)

- 1
Gin=—p&i+2n (14 1,50) v +— 1k 57 -
- =

where p is pressure; ¢ is the characteristic volume concentration of the beads; vy = Bvi/axk is the veloci-
ty gradient tensor; n is the number density of the macromolecules: T, are relaxation times; pia is the
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normal coordinate associated with the motion of the beads; and (p:%:»*) are the moments of the distribu-
tion function, which satisfy the equation
d{pi%or™
dr
Taken together, the {p;*0x*> describe the shape and size of the deformed coil and in the case in question
constitute the internal parameters. A

1
— ——({pi™0r®> — (pi*pr%0) F Vi Pr®0*> + Ve (P Pi®) - )
.y (1.2

Results similar in form were obtained in [4] for regular networks with stable nodes connecting four
chains. An analysis of the motion of the network nodes as centers of friction yielded the following expres-

sion for the stress tensor
1 [ 1

om=0ud+2Mvan+5 V5 e ; E‘((Pi“Ph"’) —<pi*0r*0), (1.3)
where criko is the elastic stress tensor; 71 is the effective coefficient of viscosity of the monomer units; v
is the number density of the nodes; 2N® ig the number of nodes in the specimen. As before, the equation
for the moments of the distribution function takes the form (1.2); however, in this case, of course, the set
of relaxation times is essentially different. Thus, here too, the internal variables are the second-order
tensors (p:%px*), which together describe the deviation of the nodes from the positions that they would
have occupied under equilibrium deformation conditions.

In addition to these tensor parameters, the system may also be defined by scalar parameters. In
fact, in considering concentrated polymer solutions and melts, it is necessary to take into account the
relaxation processes associated with the destruction and formation of labile nodes [5]. These processes
are analogous to chemical reactions, which, as is known [2], are described by scalar internal variables.

2. The thermodynamic state of a single-component system in equilibrium is described by three
parameters, for example, density p (or specific volume v), pressure p, and temperature T. Since, in prin-
ciple, there is always an equation of state relating these quantities F(T, p, p) = 0, two of the three param-
eters are sufficient for the complete characterization of a system in equilibrium.

The equilibrium change of internal energy E of unit volume of a homogeneous system is related with
the changes of entropy s per unit mass by the known [6] formula

dE = oTds +wdp, (2.1)

where w is the enthalpy of unit mass.

If the system is in uniform rectilinear motion, obviously, thermodynamic equilibrium is not dis-~
turbed. However, if there are velocity gradients and displacement gradients, then, generally speaking, the
deformed system is no longer in equilibrium, even locally.

In the presence of slow external changes the internal processes may be able to follow the change in
the state of the system. In other words, all the relaxation times are small as compared with the times
characterizing the motion of the system. This applies to low-viscosity fluids, in which equilibrium can be
established in the process of motion. and equilibrium equation (2.1) is used for the change of energy of a
volume element. In the process of motion the state of the system is determined, apart from velocity, by
density and temperature only. In flow the system remains isotropic. As is known [6], the consistent devel~
opment of a phenomenological theory of motion of such systems leads to the system of Navier-Stokes equa-
tions describing the motion of low-viscosity fluids.

When the motion is more rapid, certain internal processes are unable to follow the external changes.
The process of deformation proceeds in a nonequilibrium manner, and in this case the state of the system
is additionally described by certain internal independent variables &. This is now the generally accepted
view [2, T].

The thermodynamic functions of the system now depend on the internal variables. For example, the
internal energy of unit volume E = E(s, p, £%)

dE=pTds+wdp+TX.dE*, (2.2)
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where Xa= i(@) =—(d(ps)) >0. The quantities T, w, and X, are functions of the variables s, p, and
5,0 Ep :

T\0%* OE®

@ 1In the equilibrium state all §*=g*, and in this case T and w take their equilibrium values, while X,

0. so that at small £¢ the thermodynamic forces X, can be expanded in a series that begins with a first-
order term. In the first approximation

Jrv

Xo=Bay (E7—&). (2.3}
Henceforth we shall simply write £¢%, by which we understand gx—g2 In this case it should be kept in
mind that the £ ,% may change during motion.

The internal parameters may have different tensor orders. We will consider the case when the
internal parameters are scalars and second-order symmetrical tensors. If the system has only two of

these parameters, then as the variables it is convenient to employ the quantities &, &, gih/='§ik—§'§jj6[h,

which correspond to the "thermodynamic forces" X, Xj;, Xik’=Xm-éij6m . The relations between them
take the form

X=B5+B:kis; Xjy=3psE+3Belss; Xin=Ps&'mn. (2.4)

3. The equations of motion of a continuum are found as a consequence of the laws of conservation of

mass, momentum, energy, and angular momentum. In this case, assuming the medium to be single~
component, we shall not consider diffusion processes.

We write the law of conservation of mass in the continuity equation form
a
—dg--i—div ov=0. 3.1

Here, pv is the mass flux density. In the absence of extraneous body forces the law of conservation of
momentum takes the form

6pvi (?Hi;z
ot om0 (3.2)
(Tik is the momentum flux density tensor); the law of conservation of energy is written
JE
—_— i div —
r -div Q=0 (3.3)

(Q is the energy flux density), and in the absence of extraneous distributed moments of force the law of
conservation of total angular momentum takes the form

a G n
—(Lin+Si) 4 =
ot ( Bt h) - 0%,

0, (3.4)
where Ly=p(vov,—1zv;) is the external angular momentum flux density; Sy is the internal angular momen-
tum flux density; Gy is the total angular momentum flux density. Moreover, we must add the law of
variation of Sy '
0Sin
at
where Kii is the moment density of the forces acting on the fluid particles, and the equation for the varia-

ad
+0—xl(013ih) =K, (3.5)

tion of the entropy density ps

as s ) .
‘O(—d—t-'f-(/id—xi +div H=g, (3.8)

where Hj is the noncoavective entropy flux density; ¢ is the entropy production.

We express the momentum flux density in terms of the stress tensor IIix= pvivx—0n, after which we
rewrite Eq. (3.2) in the form

(% v %)_aﬁik (3.7
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We write the external angular momentum flux density as follows: Lyv;=x(Ilp;+ 0r;) —xa (Il;+0y5) and
express the change of external angular momentum in terms of oy

Summing Egs. (3.5) and (3.8) and comparing the equation obtained with (3.4), we find
Gim= (Lin+Sin) vi— (%i0x -+ Xr0it); (3.9
Kin=—200 - (3.10

From the latter equation it follows that the nonsymmetry of the stress tensor is associated with the pres-
ence of moments of the forces acting on the fluid particles. If there are no internal moments, the law of
conservation of angular momentum is automatically satisfied, being a consequence of the law of conserva-
tion of momentum.

Thus, the three unknown tensors in Eq. (3.2), (3.4}, and (3.5) are expressed in terms of the stress
tensor. All the expressions obtained so far are general in character and are not related to any specific
material. However, in what follows, in order to determine the unknown entropy production functions and
energy flux densities, it will be necessary to employ the expression for the change of energy density of a
particular system.

4. We will start by considering the motion of a viscous fluid on the assumption that there are no
internal relaxation processes, i.e., locally the fluid is in equilibrium. The kinetic energy of unit volume of
the moving fluid (without allowance for the kinetic energy of the internal degrees of freedom) is equal to
pv?/2 and, accordingly, using expression (2.2), we write the change of total energy per unit volume of the
moving fluid in the form

JE du; ds 22\ J
‘5t_=9”iTt+pT?}z‘+(“’+T>7§)' 4.7

On the right side of the latter equation we substitute the time derivatives given by expressions (3.1) and
(3.7) and after certain transformation obtain

E—i———é—{ov (_U+02) o ]_de dvileS
9t T Om LPTRA\T T TR | G T O g, TP

Using the thermodynamic relation

dw:Tdsq’-—}— dp 4.2}
P
we write the right side of the last equation in the form
as ds 0bi ap
T (~—— 1'—‘—") — O — T Vi —.
NG T T ] T T

We then transform the last term and, using (3.6), obtain an equation which we compare with (3.3). Hence
we obtain

H i s (G . -
Qk=pvk (Lﬂ+ 9 )"()1(01R+p61h)+THh, (4'3)
1 1
— (Gt DBen) e vip— Hi e T,
0= (Ointpdix) v 7 4.4

Thus, all the unknown functions have been determined in terms of the stress tensor and the entropy flux
density.

In the case considered the presence of a velocity gradient v;; and a temperature gradient Vi T, which
determine the fluxes o+ pSu and Hy, leads to irreversible proceszes. As functions of the gradients the
fluxes are not given in general form, but at small gradients they can be determined as expansions in the
small gradients. If we further require that rotation at constant velocity of the liquid as a whole does not
affect the stress tensor, then correct to terms of the first order we find

Oint+ POin=20V i) T55ikViis (4.5)
“
i=— =T,
H T 4.6
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where we have introduced the notation v'um=vem—30mvi;. In order to ensure the positiveness of o, the

constants 7, £, % must be positive.

The substitution of expressions {4.5) in (3.7) leads to the equation of motion of a viscous fluid —~ the
\vavier —Stokes equation, which, when the coefficients of viscosity do not depend on the space coordinates,
-akes the form

du; ap 0%; + (1 ) 0%y,
< n+E

°Tar T o T Y Fxi2 Ox:0%x 4.7)

After substituting expressions (4.5) and (4.3), with allowance for the former, in (3.6), we obtain the
energy transfer equation
T( ds ds

57 —t U EP ) =div (XVT) =+ (oik-{-péih) Vi . (4.8)

Together with continuity Eq. (3.1), expressions (4.7) and (4.8) form a complete system of equations for
describing the motion of a viscous fluid.

5. We will now consider the motion of a system characterized by certain internal parameters.
Using (2.2), we write the change internal energy in the form

0E duy s + ( v2 ) do G

T Wt |+ T Xa—— (5.1)

FTRLA A TR T 7)o Tty
Proceeding as before, with the aid of Egs. (3.1}, (3.6), and (3.7) we transform Eqg. (5.1) to an equation that
has the form of the law of conservation of energy; in this case, instead of (4.2), we use the relation dw=

Tds +—(1)~dp+£and§“- Eventually, we obtain
¢ de=

0E 0 2
_—+_—dxh [th (&H—U—g )——‘Ui(O'ik +pdir)+TH ] =To— (Gin+pSn)var + VT +T X,. (5.2)

ot
Comparing this equation with (3.3), we find that, as before, the energy flux takes the form (4.3), while the
entropy production

— . . 1 3 : 1 dga
0'—(0'1h+p61h)T Vik—'H1T—TXa- (5.3)

We will consider the simple case when the motion of the system is determined by two internal
parameters — the scalar £ and the second-order symmetrical tensor & £;x- Then the last term in Eq. (5.3
is rewritten in the form —(d¢/dtX—(dé;/dtX;y. The fluxes oy + pdyy, —H;, ~d&/dt, —d&y, /dt are functions

of the "thermodynamic forces™ (1/T)vji, (1/TIV;T, X, X and in the linear approximation, if it is further
assumed that rotation of the system as a whole does not produce any changes in the system, take the form

_Hi:xivm (5.4)
T
Oir+PSin =20V timy+ 5 v550ia — ool Xix — por TXBin — woo T X550
gz
—_ dtg = — vy + puk + el ;
dEi‘ 7 4
- étﬂ = —agoV m) + %oa X in — MaovisSin + nar X 8in+ oo Xy;0n - ©:5)

By virtue of the principle of symmetry of the kinetic coefficients [2, 7] Clgp = Qop; Hap=lga.. Thus, of the 14
coefficients in Eqgs. (5.4) and (5.5) 10 are independent, the condition of nonnegativity of the entropy produc-
tionimposing certain limitations on their values.

We now write the fluxes in terms of the internal parameters. In this case expression (5.4) remains
unchanged, while, using (2.4), we can rewrite (5.5) in the form

Gik+P6ih———27]V/(ik)+";ij6ih+l §inF 0188+ wilijin (5.6)
d'é/ik_ , L., .
= =togV (in)— LY (5.7
dg . dg;; c s e
E=umv”~—ﬁug VAPISEN _df =3n20Vs;— ha1d — Aaok (5.8)
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where v/r = QB4 and the coefficients wy, wy, and 7\(15 are related in a certain way with the consfa.nts pre-

viously introduced. If the mafrix Aag can be reduced to diagonal form, then instead of (5.8) we obtain
dg 1, dk;;
s s
If the velocity gradients disappear, then each of Egs. (5.7) and (5.9) assumes the form: d¢ %*/dt =
~(1/7,)6%. This equation describes the approach of the system to equilibrium. The constants 7y determine
the rate of approach of the system to equilibrium and have the significance of relaxation times.

— i —— B
=3u20vjj 2 5ij (5.9}

If all the relaxation times of the system are equal to zero, then the values of the internal parameters
are always equal to the equilibrium values, and the system of equations of motion reduces to the system
formulated in the previous section. In the general case, substituting (5.6) in (3.7), we obtain the equation
of motion of a medium with scalar and tensor internal parameters

dv;  dp &% 1 0%, vy 0t Jg 98
oot (30et )t e e G (5.10)
Together with continuity Eq. (3.1), heat transfer Eq. (4.9), and the laws of variation of the internal param-
eters (5.7) and (5.9), Eq. (5.10) completely determines the behavior of the system in the linear approxima-
tion. The coefficients in Eqs. (5.4), (5.6), and (5.9) are material constants of the system.

This system of equations can be written in another form if the internal parameters are eliminated.
which is possible in principle. In this case the system reduces to a system of fewer, but higher-order
equations.

The number and physical significance of the material constants introduced by relations of type (5.6).
(5.7), and (5.9), the form of the equations of motion and, consequently, the properties of the system depend
importantly on the tensor order of the internal variables, which can thus be used to classify viscoelastic
systems.

6. Sometimes certain relaxation processes in the system are so slow that a noticeable change does
not take place during the observation period, i.e., the relaxation times of these processes may be con-
sidered infinitely large. In this case the values of the internal parameters and hence the stress tensor are
uniquely determined by the shape and volume of the specimen. Thermodynamic concepts can be used to
describe the partial equilibrium state of a deformed system.

Let x;° be the Cartesian coordinate of some point of a body before deformation; of course, the coordi-

nate x. of the same point after deformation is a function of the initial point Xy = Xy (ng). The deformation
0

vector is defined as the difference u; = x; — %5,

Considering an arbitrary deformation, we write the change of the small distance dxj = (dxy/dsgc”)
dx’ = Aedxi’, length (d2)? = AjkAqzdxi’dx;’, and volume dv = [A|dv,. Following Flory (8], we select the sym-
metrical tensor Akj = }\ij}‘ik as our measure of large deformations.

Let oy — the tensor of the stresses referred to the deformed body — be the true stress tensor. The
force acting on unit volume is written in the form
B d0ip
3k,
We will consider the work done by the internal stresses in a virtual transition between two deformed
states

(6.2

a()'ih aO'ik l)\,l
SRV = SxidV =—"-
R otn " 020 It

6.(7;{1 Vo .

Integrating the last relation, we find the work done hy the internal stresses in a body with the initial
volume V;. We evaluate the intergral by parts, assuming that at the boundary of the region of integration
the stresses disappear. We obtain

f(SRdV:— fo‘ih ]A] 67»1-de0= fUih L?\}Hj dV,

\d \4

Vo Arj Mj
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whence we find the work per unit of deformed volume
4R = — 5 dyi~ oo A (6.2)

Using the known [7] equations for the change of internal and free energy in homogeneous deformation,
together with (6.2), for a body with volume V we find

1%
d¢=TdS +- AjiTi0mAse T d A s (6.3)
v
dS"= —SdT‘iL?}vji—lGih)\,gk—ldAjs . (64)
From the latter relation we determine the elastic stress tensor Uih=§ Arihis (gg—) .
sifr

7. If, in addition to an infinitely large relaxation time, the system is also determined by other
relaxation processes with relaxation times comparable with the time characterizing the motion, then the
system will exhibit viscoelastic properties. We describe the motion of such a system by the method
employed in section 5.

Using (6.3), we find the change of internal energy for unit mass
ds—TdS-r—dW+ X «dE® (7.1)

where dW—§ Aij~lomhe~'dAjs  is the change of elastm s’cram energy density; O‘lk is the elastic stress

tensor. Multiplying (7.1) by p, we find the change of internal energy density dE =pTds+edp+dW.+T Xadga,
Thus, the change of total energy per unit volume takes the form
dE du; ds+ ( S+ 4 )dp ow dg ‘ (7.2)

AL I Sl X
PTG TR o Tor T

By analogy with the procedures described in sections 4 and 5, using Egs. (3.1), (3.8), (3.7), and (7.1),

we reduce Eq. (7.2) to the form
0E 9 v } 3 dw How.T dsa
7+T:[pvh(8+—2>—vicih+THk =Tg+ T ciwvie THVIT+TX, If (7.3)
Recalling the definition of the strain tensor, we obtain % = (Agihis T hashit) Vo5 , after which we determine

the rate of change of elastic energy density

ﬂ= Sanvin - (7.4)
dt :

We substitute the latter expression (7.3) and, on comparing the equation obtained with (8.3), obtain

2

Qu=pUx ( 8+—;—> — UG+ THy;
(7.5)

ol 1 dg*
=(Gih—6(ih))—TVih—Hi—fViT— T Xy . (7.8)

When -pd;y is substituted for c(ik)o, the expression for the entropy production coincides with expres-
sion (5.3). If, as.in section 5, we assume that the motion of the system is also determined by scalar and
tensor parameters, then, obviously, with allowance for the above-mentioned substitution, all the subse-
quent results of section 5 are also applicable to the case considered here.

8. We have formulated the systems of equations of motion on the assumption that the state of the
system is characterized by certain internal parameters, in terms of which the stress tensor was deter-
mined. Using the laws of variation of the internal variables with time, we can eliminate these variables
from the stress tensor.

From Eqgs. (5.7) and (5.9) we obtain

o0

o
Elih=a20 fe_s’:t’v,-,;k(t—s)ds; §=u10f@—slt'ij(t—S)'dS;
G

o (8.1)

§ji= Heo f e~y (¢ —s)ds.
]
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whence we find the work per unit of deformed volume
i
dR=“—2‘ it 10‘1}1}\:3}1 1dA]§ (6-2)
Using the known [7] equations for the change of internal and free energy in homogeneous deformation,
together with (6.2), for a body with volume V we find
V
dC=TdS —i——{; lji"lo'ihksk—ldl\js ) (6.3)

14
d§= —S8dT J.-E- ).ﬁ“o'fkksk’ldAjs . (6‘4)
From the latter relation we determine the elastic stress tensor Gm——'% Arihis (———a A‘ ) .
sijr

7. If, in addition to an infinitely large relaxation time, the system is also determined by other
relaxation processes with relaxation times comparable with the time characterizing the motion, then the
system will exhibit viscoelastic properties. We describe the motion of such a system by the method
employed in section 5.

Using (6.3), we find the change of internal energy for unit mass
1 T
de=Tds+—p— dW+-(—)—Xad§°‘ v 7.1)
{ {
where dW=§ M~ lom®Aa~ldA;;  is the change of elastic strain energy density; O'iko is the elastic stress

tensor. Multiplying (7.1) by p, we find the change of internal energy density dE =pTds+edp+dW. -+ TXndi>,
Thus, the change of total energy per unit volume takes the form

dE du; . ds ( o )dp oW dge
1 i o \dp OV _ 7.2)
7 il SRl b R G v (

By analogy with the procedures described in sections 4 and 5, using Eqgs. (3.1), (3.6), (38.7), and (7.1),
we reduce Eq. (7.2) to the form
o 0 =Y. +HiwiT 478, B
5 + 7 {pvh(a—i——é- >—Ui0ik+THk =To+ T ouvie TVl +TXy dt (7.3)
Recalling the definition of the strain tensor, we obtain %—%— (Agihjs+hashit) ve; , after which we determine
the rate of change of elastic energy density

dW
7—0‘(111) Vik - (7.4:)

We substitute the latter expression (7.3) and, on comparing the equation obtained with (3.3), obtain

2
Qr=0p0x ( s+%—) — 0o+ THy;
) (7.5)

X,. (7.6)

1 1 dge
= (o—0ouw)—=vir—H; —=V;T—
0= (01~ 0n’) =5 Vie T T
When 6y is substituted for O'(ik)o, the expression for the entropy production coincides with expres-
sion (5.3). If, as.in section 5, we assume that the motion of the system is also determined by scalar and
tensor parameters, then, obviously, with allowance for the above-mentioned substitution, all the subse-
quent results of section 5 are also applicable to the case considered here.

8. We have formulated the systems of equations of motion on the assumption that the state of the
system is characterized by certain internal parameters, in terms of which the stress tensor was deter-
mined. Using the laws of variation of the internal variables with time, we can eliminate these variables
from the stress tensor.

From Egs. (5.7) and (5.9) we obtain

o

[=~]
Ein=0i0 ‘/‘e—s':t'vlih(t"‘s)ds; §=!l10_/e_s’lf'vﬁ(t“5)d5;
b

)
e (8.1)
5= ligo f e=sityy;(t—s)ds.

0
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The velocity gradients in the integrands must be evaluated at the point where the "particle” is
located at time t-s and, consequently, the integrals should be evaluated along the trajectories of the "par-
ticles." If the velocity gradients do not depend on the coordinates, the integration in (8.1) should be under-
stood as integration with respect to time.

Substituting (8.1) in (5.6) and introducing the new notation aga4eBs =h, higwi = 21, hygwy = 29, We

obtain
Gin=0ur"+ 20"+ 2 fhe'm?'(m(f—s)ds +[ CV:’H‘f(219'5“‘+223‘5"‘)V:‘j(f—S)dS ]%z- 8.1)
4] 0 N

For fluid systems O'iko = —p0s1. The latter equation is also the governing equation of the system with scalar

and tensor internal parameters for the class of motions with velocity gradients that do not depend on the
coordinates. We note that, in general, the governing equation, understood as the relation between the
stress tensor and the velocity gradient tensor, cannot be established for a given system in universal form,
since, in accordance with (5.6), the tensor of the stresses at a given point depends not only on the value of
the velocity gradient tensor but also on the values of the internal parameters, which are determined by
the values of the velocity gradient tensor on the previous trajectory of that point.

Relation (8.2) can easily be extended to an arbitrary number of relaxation processes on the assump-
tion that each process is associated with a normal coordinate. In this case the integrals in (8.2) contain
sums, which for a large number of closely spaced relaxation times can be written in the integral form

Zhie-8/<;= fH(T)r—Ie—S/Td-c; Zzie-s/ff= fZ(r)t‘le~S/Tdr.
i 0 3 0

7

By means of these relations we introduce the known [9] spectral functions H(r) and Z(7), which, of course,
cannot be evaluated in the phenomenological theory. Finally, we write the linear governing equation in the
following form

Oin= 0021V n)+ 2 ffH(r)t"‘e S yipy (E— 5 ) drds -1-{ Evii+ /fZ (t)r-'e~ °/Tv”(t—a)drds] Sin . (8.3)

Thus, the idea of a relaxation spectrum can be introduced for the class of motions with a velocity
gradient independent of the coordinates. For this type of motion the stress tensor is determined by the
values of the velocity gradients at previous moments of time. For relaxation times that are small as com~-
pared with the period or characteristic time of the motion the behavior of the system is determined by the
values of the gradients at moments of time close to the observation time t. Accordingly, the velocity gra-
dients entering into the last relation can be expanded in powers of s near the time t and, consequently, the
stress tensor will be determined by the velocity gradient and its higher time derivatives. In the zero-order
approximation the relaxation processes make a contribution to the measured effective viscosity

ﬂ—TH'/H(rd'c =+fz (8.4)

In the next approximation the stress tensor is determined not only by the velocity gradients but also by the
first-order accelerations.

9. As may be seen from a comparison of Egs. (1.2) and (5.7), the linear theory of the motion of
systems with internal parameters, considered in the previous sections, is insufficient to describe the
motion of polymer systems. In fact, Eq. (1.2) can only be obtained from an equation for the "fluxes" qua-
dratic in the "forces."

There is no great difficulty in writing down, instead of (5.6) and {5.9), expressions for the "fluxes”
correct to terms of the second order in the gradients in general form (it must be assumed that in this case
the stress tensor may be nonsymmetrical) and formulate the corresponding, naturally more clumsy, equa-
tions of motion, which will also be general equations of motion describing the motion of the systems con-
sidered in section 1. Moreover, in principle, for a given set of internal variables it is possible to formu-
late the equations of motion with any desired accuracy. Without dwelling on this, we will examine a
possible variant of the nonlinear theorv for the class of motions with velocities independent of the coordi-
nates.
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In the nonlinear case it is no longer possible to introduce relaxation times or, if they are introduced,
they depend on the value of the internal variables. If the variables are not "entangled," the relaxation time
depends only on its "own" coordinate T, = T, (£ @), If, however, the variables are "entangled,” then the

relaxation time will be determined, generally speaking, by the values of all the internal variables. For the
case of scalar and tensor parameters in question

=1 85 8w); u=nul 85 n) ne=n(E s Ye). 9.1)
In the second approximation the relaxation times can be expressed in the form of linear functions of the
variables.

As we have introduced relaxation times that depend on the internal variables for the class of
motions with a velocity gradient independent of the coordinates in the case of a large number of internal
variables, it is natural to introduce spectral functions of the relaxation times that likewise depend in
explicit form on the values of the internal variables. Assuming that the viscosity term with 7 = 0 is
included in the spectral functlon, we write the stress tensor in the followmg form:

0in (8 Ejp &lan) =000 +2 f‘/\th,l(r, & & En) Tl Y (E—s) duds + fszh(T9~y Gp Py T le vy (F—s)duds. (9.2)

Naturally, if not all the mternal variables are scalars, the spectral functions are tensors which at small .
velocity gradients, when the linear theory becomes applicable, go over into the linear spectral functions

1
Hupjr 5 1 (7) (81300 8udss) s Zin—Z (1) b

As in the previous section, at small relaxation times the velocity gradients in (9.2) can be expanded
in powers of s near the time t and, accordingly, in the zero-order approximation from (9.2) for an incom-
pressible fluid we obtain the expression Ow=—pdix+2nnva, where we have introduced the effective coef-
ficient of viscosity mmju=[Hiu;(t)dv, which is a fourth-order tensor that depends on the internal param-

eters and, consequently, varies with the velocity gradient. As the velocity gradients tend to zero, myj—

1
51 (8:50m1 810451 -

In the first approximation the coefficient of viscosity can be represented in a form linear in the
internal parameters. Without writing down the general equations, we point out that for steady-state flow
there follows from Egs. (1.1) and (1.2) an expression for the viscosity coefficient tensor of a dilute poly-
mer solution precisely in the form of a linear function of the internal parameters

_ l
Nirgt="n (1 +1,5¢) (8:;61+ 8:18rj) -f-—InC 2((9;1",0';5‘) 815+ (01%0:%) Brj).

Consequently, for this case the spectral function is also a fourth-order tensor. All the flow characteristics
of dilute polymer solutions likewise reduce ta the indicated viscosity anisotropy.

Apart from the tensor internal variables associated with the orientation and deformation of the coils,
the flow of a concentrated polymer solution or melt is also determined bv the scalar internal variables
associated. for example, with a change in the equilibrium number of bonds [5]. These two groups of param-
eters — tensor and scalar — determine the two — orientational and structural — principal mechanisms of
flow and, in particular, the gradient dependence of the viscosity of concentrated polymer systems. Taken
separately, neither will lead to correct results.

SUMMARY

1. The motion of a viscoelastic system with m internal parameters is described by a system of
m + 5 equations, The material constants of the system are the coefficients of the terms of the expansion of
the "fluxes” in powers of the "gradients.” The number and tensor order of the internal parameters deter-
mine properties of the viscoelastic svstem and also the number and physical significance of the material
constants, From this standpoint viscoelastic systems can be classified according to rank — the tensor
order of the internal parameters of the system — and order —the degree of the expansion of the "fluxes"
in powers of the "gradients."
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2. The behavioral characteristics of polymer solutions and melts are related with the presence of
internal parameters — second-order tensors associated with the stretching and orientation of the macro-
molecules and scalars associated with changes in the structure of the system.
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