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Abstract

The paper contributes to the problem of description of relaxation behaviour of entangled linear polymers in terms of

dynamics of a single macromolecule. The approach systematically studies deviations from the Rouse dynamics when

adding non-Markovian and anisotropic noise. The introduction of these terms decreases in mobility and increases in

relaxation times of the macromolecule in comparison with the Rouse case. An intermediate length, which has the meaning

of a tube radius and/or the length of a macromolecule between adjacent entanglements, is calculated through parameters

of the model. It is shown that introduction of local anisotropy of mobility of particles in the mesoscopic dynamics

of generalised Cerf-Rouse modes allows one to get the effects, which used to be associated with reptation motion

of the macromolecule. The devised model can be considered as a possible expansion of the conventional reptation-tube

model and can be useful, for example, for formulating a consequent theory of viscoelasticity of linear polymers in

entangled states.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

To explain dynamic behaviour of polymer solutions and melts, some specifying hypotheses about the
behaviour of individual macromolecules in the system were formulated. One of the hypotheses assumed that
motion of the chain is essentially confined in a tube-like region made of the surrounding macromolecules [1],
and the reptation motion of macromolecule inside the tube was introduced by de Gennes [2]. Based on these
ideas, a very elegant model—the reptation-tube model—was elaborated by Doi and Edwards [3]. It appeared
that the model perfectly (or almost perfectly) describes the phenomenon of diffusion of macromolecules in
strongly entangled systems (M410Me, where Me is ‘the length of the macromolecule between adjacent
entanglements’), though, in application to viscoelasticity, the model was not so successful: the well-known
long-standing discrepancies are discussed, for example, by Lodge [4]. For the long time the scholars saw a
solution of the problem in expansion of the reptation-tube model, in order a generalised model could describe
e front matter r 2005 Elsevier B.V. All rights reserved.
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the phenomena of viscoelasticity as well. The recent discussion of improvements to the reptation-tube theory
can be found, for example, in papers by Likhtman and McLeish [5] and by Park and Larson [6]. One can see,
nevertheless, that the introduction of the amendments, such as the constraint-release mechanism, contour-
length fluctuations, subchain stretching and so on, too numerous and elusive to be listed here in full, has not
brought the desired consistent interpretation of the bulk of empirical facts.

Our intention is also to find a proper expansion of the reptation-tube model, though our starting point is
different. The model, we shall consider, is designed as a non-linear generalisation of the known [7,8] stochastic
dynamics of a macromolecule. To avoid misunderstanding and misinterpreting, note that we do not deny the
achievements in understanding of dynamics of a separate macromolecule in an entangled system; on the
contrary, looking for a unified mathematical model, we argued earlier [8] that the reptation relaxation is
important for correct understanding of viscoelasticity; we needed also in incorporation of a mechanism similar
to the constraint-release mechanism to describe the dynamics properly. However, there is no need in a special
discussion of such effects as the contour-length fluctuations and the subchain stretching, so as they are
inherently included in the basic model. We do not postulate the existence of the tube; it is enough to postulate
that the surrounding of the considered chain is dynamic, something like a viscoelastic medium, which
determines some restrictions on the motion of the macromolecule and allows one to introduce and calculate a
dynamic intermediate length, which can be identified with the radius of the tube postulated in the conventional
reptation-tube model. This study demonstrates that the introduction of local anisotropy of mobility of
particles of the coarse-grained chain brings changes in mobility and relaxation times of the macromolecular
coil, so that one can attain the results of the conventional reptation-tube model. The proposed theory can be
considered as an attempt to formalise the common knowledge about the dynamics of a macromolecule and
can be called a generalised reptation-tube theory; in any case, it does not belong to the class of theories, which
deny the reptation motion of a macromolecule. One can note that the introduction of local anisotropy of
mobility in a model of dynamics of a macromolecule is not a new idea. Some earlier works (see Ref. [9], for
example) exploit this idea, but, in contrast to this paper, the authors used an assumption of Markovian
dynamics, which could not allow to get restrictions on the lateral motion of a macromolecule. Only a
combination (considered in this paper) of non-Markovian dynamics and local anisotropy allows us to reflect
the dynamics of a macromolecule adequately.

The equations of dynamics of a macromolecule in the system of macromolecules are described in Section 2:
the motivations and details can be found in the cited works [7,8]. Some results of simulation are considered in
Section 3. The algorithm of numerical solution is described in the Appendix. The conclusion contains a
discussion of the results.
2. Generalised dynamics of a macromolecule

2.1. The conventional form of dynamic equations

It is known, that every flexible macromolecule can be effectively presented as a chain of coupled Brownian
particles (so-called bead and spring model). Dynamics of a probe macromolecule in an entangled system can
be simplified by the assumption that the neighbouring macromolecules are described as a uniform structureless
medium and all important interactions can be reduced to intramolecular interactions, so that large-scale
stochastic dynamics of a single macromolecule in the entangled system can be considered as dynamics of
effective Brownian particles. The situation can be considered in an approximation, which is linear to respect to
velocities, while the mutual hydrodynamic interaction of the particles can be omitted, so that effective
dynamics of a single chain as the dynamics of coupled Brownian particles is described by a set of the coupled
stochastic equations

m
d2rai
dt2
¼ �z_rai þ F a

i þ Ga
i � 2mTAagr

g
i þ fa

i ðtÞ; a ¼ 0; 1; 2; . . . ;N, (1)

where m is the mass of a Brownian particle associated with a piece of the macromolecule of length M=N; ra

and _ra ¼ ua are the co-ordinates and velocity of the Brownian particle and 2Tm is the coefficient of elasticity of
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‘a spring’ between adjacent particles, T is temperature in energy units. The matrix Aag depicts the connection
of Brownian particles in the entire chain.

The dissipative forces in Eqs. (1) are introduced by three terms, the first of which, �zu
g
j ; presents the

resistance from the ‘monomeric’ liquid, and the others, F a
i and Ga

i present the effective forces from the
neighbouring macromolecules and satisfy the equations

t
dðFa

i þ Ga
i Þ

dt
þ Fa

i þ Ga
i ¼ �zBH

ag
ij u

g
j � zEG

ag
ij u

g
j , (2)

where t is a relaxation time of the surrounding. The force F a
i is a force of external resistance, while the force Ga

i

is a force of internal resistance with the property

XN

a¼0

Ga
i ¼ 0; i ¼ 1; 2; 3. (3)

The coefficients B and E in Eq. (2) are introduced as measures of intensities of the external and internal extra
dissipative forces. These coefficients are determined by the surrounding of the considered macromolecule; in
particular, they depend on the length of the neighbouring macromolecules.

For the case, when Eqs. (1) and (2) are linear, as assumed, in velocities, the correlation functions of the
stochastic forces in the system of Eqs. (1) can be easily determined [10] from the requirement that, at
equilibrium, the set of equations must lead to well-known results (the fluctuation–dissipation theorem). It is
readily seen that, according to the general rule [10],

hfa
i ðtÞf

g
kðt
0Þi ¼ Tz 2dagdikdðt� t0Þ þ

1

t
ðBH

ag
ij þ EG

ag
ij Þ exp �

t� t0

t

� �� �
. (4)

In linear, in respect of the co-ordinates, approximation [7,8], the matrixes H
ag
ij and G

ag
ij in Eqs. (2) and (4) are

numerical matrixes (see below). A special case, when non-linearity is connected with local anisotropy of
mobility, is studied in this paper.

The sources of inspiration for formulating the above equations, also as discussion of origin and physical
meaning of the introduced quantities t, B and E, can be found in our earlier publications [7,8].

2.2. A new form of dynamic equations

The random process in Eq. (1) can be represented as a sum of the two independent processes

fa
i ðtÞ ¼ f̄a

i ðtÞ þ
~fa

i ðtÞ,

while the first one is a Gaussian process with the correlation

hf̄g
i ðtÞf̄

m
j ðt
0Þi ¼ 2Tzdgmdijdðt� t0Þ (5)

and the second one is not delta-correlated, but a Gaussian process as well.
It is convenient to introduce the variable

Fa
i ¼ Fa

i þ Ga
i þ

~fa
i ðtÞ,

so that the system of Eqs. (1) and (2) can be written as

m
d2rai
dt2
¼ � zua

i þ Fa
i � 2mTAagr

g
i þ f̄a

i ðtÞ,

t
dFa

i

dt
¼ � Fa

i � zBH
ag
ij u

g
j � zEG

ag
ij u

g
j þ sai ðtÞ. ð6Þ

The first one of the above equations represents Langevin equation for the Rouse chain in the presence of the
extra random force Fa

i . One can note that this equation (at m ¼ 0) is identical to the Langevin equation, which
was formulated [11] to study the behaviour of polymer chain in a random static field; the equation was
investigated numerically by Milchev et al. [12]. However, the force Fa

i in Eqs. (6) is not static one and can be
specially designed for a chain in the entangled system, according to the second equation.
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The random process in the last stochastic equation from set (6) is related to the above introduced random
force by equation

sgi ¼ ~fg
i þ t

d

dt
~fg

i (7)

and is specified below for two cases.

2.2.1. Linear approximation

In the linear case, the matrixes H
ag
ij and G

ag
ij are numerical matrixes, satisfying the requirement (3), so that

the simplest forms can be written as

H
ag
ij u

g
j ¼ ua

i ; G
ag
ij u

g
j ¼

1

N
ðN þ 1Þua

i �
XN

g¼0

u
g
i

( )
¼ Gagu

g
i . (8)

where Gag is a component of the numerical matrix

G ¼

1 �1=N � � � �1=N

�1=N 1 � � � �1=N

� � � � � � � � � � � �

� � � � � � � � � � � �

�1=N �1=N � � � 1

������������

������������
. (9)

Then, if the relation

hsgi ðtÞs
m
j ðt
0Þi ¼ 2TzðBdgm þ EGgmÞdijdðt� t0Þ (10)

is satisfied, the following relation, according to Eq. (7), is valid for the random force correlator

h ~fg
i ðtÞ

~fm
j ðt
0Þi ¼

Tz
t

Bdgm þ EGgm� �
dij exp �

t� t0

t

� �
. (11)

The sum of expressions (5) and (11) is a particular form of the random-force correlation function (4) for
this case.

2.2.2. A non-linear approximation: local anisotropy

The relations of the previous section are valid for the simple case, when there is neither global nor local
anisotropy, that is the particles have spherical forms and the medium is isotropic. For the case, when the local
anisotropy is taken into account, relations (8) ought to be generalised as

H
ag
ij u

g
j ¼ ua

i �
3

2
ae eai eaj �

1

3
dij

� �
ua

j ,

G
ag
ij u

g
j ¼

1

N
ðN þ 1Þ ua

i �
3

2
ai eai eaj �

1

3
dij

� �
ua

j

� �
�
XN

g¼0

u
g
i �

3

2
ai e

g
i e

g
j �

1

3
dij

� �
u
g
j

� �( )
,

eai ¼
raþ1i � ra�1i

jraþ1 � ra�1j
; a ¼ 1; 2; . . . ;N � 1,

e0i e0j ¼ eN
i eN

j ¼
1

3
dij, (12)

where ae and ai are parameters of local anisotropy introduced in such a way, that positive values of the
parameters correspond to increase in mobility along the contour of the chain. For the linear case, when on
average eai eaj ¼ ð1=3Þdij , one returns from Eqs. (12) to relations (8).
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For this case of local anisotropy, relation (10) ought to be written as

hsgi ðtÞs
m
j ðt
0Þi ¼ 2TzðB H

gm
ij þ EG

gm
ij Þdðt� t0Þ, (13)

where the matrixes H
gm
ij and G

gm
ij are defined by Eqs. (12) and have the form

H
ag
ij ¼ dag½dij �

3
2

aeðe
g
i e

g
j �

1
3
dijÞ�,

G
ag
ij ¼ Gag½dij �

3
2 aiðe

g
i e

g
j �

1
3 dijÞ�. (14)
2.3. Parameters of the problem

So, dynamics of a single macromolecule in an entangled system is defined by the system of non-linear
Eqs. (5), (6), (12) and (13), which contain some phenomenological (mesoscopic) parameters. In addition to
characteristic relaxation time of the Rouse theory

t� ¼
zNhR2i

6p2T
¼

zN2

4p2mT
�M2, (15)

where hR2i is the end-to-end distance of the macromolecule, some quantities have appeared to specify the
influence of the neighbouring macromolecules on the behaviour of the tagged macromolecule.

The linear case ðae ¼ 0; ai ¼ 0Þ of the above equations was investigated thoroughly [7,8], which allows
one to identify the parameters t, B and E due to the available empirical results for linear viscoelasticity of
linear polymers. Indeed, the expressions for the coefficients of viscosity, terminal viscoelastic relaxation
time and the plateau value of dynamic modulus for the system of strongly entangled macromolecules are
calculated as

Z ¼
p2

6
nTt�B; t ¼ 2Bt�w; Ge ¼

p2

12
nTw�1, (16)

where n is a number of macromolecules in unit of volume. The terminal relaxation time t coincides with the
postulated relaxation time, which means that the system is characterised by self-consistency. Relations (16)
allow one to interpret the parameter w as

w ¼
p2

12

Me

M
�

Me

M
,

where M is the length of a macromolecule and Me is the length of a part of a macromolecule between adjacent
entanglements, and to consider the dimensionless quantity w ¼ t=ð2Bt�Þ to be a parameter of the system
instead of the quantity t. Taking the above relation into account, the experimental evidence for viscosity
allows one to define the parameters B as a function of the parameter w

B ¼ ð2wÞ�2:4; wo0:5. (17)

The measure of internal resistance E of a macromolecule is small for weakly entangled systems and is as big as
E ¼ Bp2=w for long macromolecules (w50:1 or Mb10Me), but the exact dependence in the intermediate
region is not known. For estimation of the measure of internal resistance for the values from M ¼ 2Me up to
635Me, one can use the simple approximate formula

c ¼
E

B
¼ ð1=w� 2Þ2=64. (18)

The non-linear case ðaea0; aia0Þ of Eqs. (4), (5), (11) and (12) is an object of study in this work. To
estimate the effect of introduction of local anisotropy, we shall use the standard procedure of numerical
integration, implementation of which to the considered problem is described in Appendix A. We shall
calculate some characteristic quantities, which allows us to identify the parameters of local anisotropy ae

and ai.
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3. Some results of simulation and discussion

The introduction of local anisotropy can be helpful for description of the behaviour of a macromolecule in
the systems with well developed entanglements restricting the lateral motion of the macromolecule.
Apparently, there is a such molecular weight M� of linear polymer—a transition point, above which ðM4M�Þ

a macromolecule moves among the neighbouring macromolecules via reptation mechanism. This point is
defined theoretically [8] as a solution of the equation 2wBðwÞ ¼ p2, which, taking empirical dependence (17)
into account, gives M� � 10Me. The transition point can be estimated empirically as a position of a point, in
which the molecular-weight dependencies of relaxation times and coefficient of diffusion change drastically.
Examining empirical data of different scholars on diffusion of macromolecules, Wang [13] showed, that,
for both melts and solutions of linear polymers (with a few exceptions, among them hydrogena-
ted polybutadiene—hPB), there is a point M� ¼ 10Me dividing regions of different dependences of self-
diffusion coefficient on molecular weight, while in the region of higher molecular weights the reptation
law of diffusion with index �2 is valid. It was also noted earlier [14], that ‘if there is a nonuniversal crossover
to an exponent of �2:0, for hPB it occurs at or beyond M=Me � 102, whereas for PS and PDMS it might
occur near M=Me � 10’. So, one can consider that for linear polymers, as a rule, there is a point about
M� ¼ 10Me, where the mechanisms of mobility change, while the reptation mechanism of mobility domi-
nates above the transition point M� ¼ 10Me (or in the formulation, which has no exceptions: below the
value w� ¼ 0:1).

Thus, the examination of empirical data [13] confirms the theoretical estimate of the transition point as
M� � 10Me, and one needs in some non-zero values of the coefficients of local anisotropy to obtain empirical
dependences of diffusion and relaxation times in the region above the point 10Me. In contrast to the above,
some scholars [4,14] assume that the transition point coincides with the entanglement point 2Me and,
considering the data for the whole region above 2Me, find the empirical law of molecular-weight dependence
of self-diffusion coefficient with the index about �2:3, thus, calling in question the well-established reptation
law with the index �2. However, to estimate a real empirical value of the index in the reptation law of
diffusion, one needs much longer macromolecules and, in any case, one has to exclude the transition interval
below 10Me. Note also that the measurements of diffusion of labelled chains in a melt matrix of much higher
molecular weight (tracer diffusion) show the index �2 [13].

3.1. Mobility of a macromolecule

The mean square displacement of the centre of mass of a macromolecule in a viscous liquid under the
simplest assumptions (the Rouse case) is described as

DðtÞ ¼ 6D0t; D0 ¼
T

Nz
�M�1, (19)

where D0 is the coefficient of diffusion of the macromolecular coil. In a complicated case, when a
macromolecule is moving among the neighbouring macromolecules via reptation mechanism, mobility of the
macromolecule is described by the Doi–Edwards model [3,15]. The dependence of the mean square
displacement of the centre of mass of a macromolecule on the time, in the symbols used in this paper, can be
written as

DðtÞ ¼

6D0t; tote;

4x2
D0

hR2i
t

� �1=2

; teotot�;

6Dt; t4t�;

8>>><
>>>:

(20)

where D0 is the coefficient of diffusion of the macromolecular coil in a ‘monomer’ viscous liquid, t� is the
characteristic Rouse relaxation time defined by Eq. (15), te ¼ ð4p2=3Þðx

4=hR2i2Þt� is an entanglement time, x is
the radius of the tube, which is considered to be identical to the intermediate length emerged in the model of
generalised Cerf-Rouse modes and hR2i is the mean square end-to-end distance of the macromolecule. The last
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line of relations (20) defines the coefficients of diffusion of the macromolecule via the reptation mechanism

D ¼ D0
4

3

x2

hR2i
� D0

x2

hR2i
�M�2. (21)

The reptation mechanism of mobility was specially invented [2] to describe the molecular-weight dependence
of the coefficient of diffusion of a macromolecule in entangled systems correctly. As an example, dependence
(20) for a polymer with the length M ¼ 25Me is depicted in Fig. 1 by dashed lines.

Looking at relations (20), one can think that the changes of the exponent occur in the vicinity of the points
te and t�. Indeed, it is easily seen that the position of the first crossing practically coincides with the
entanglement relaxation time te, while the position of the second one is essentially different from the
characteristic relaxation time t�, as one can see also in Fig. 1. It can be estimated as

t �
3

2
p2t�. (22)

Relations (20) ought to be corrected, in order to eliminate, at least, the internal inconsistency.
A complementary picture is given by the linear model of generalised Cerf-Rouse modes. The mean square

displacement of the centre of mass of a macromolecule, calculated as the zeroth normal co-ordinate r0, for the
above model (1)–(4) with linear approximation (8) is defined as

DðtÞ ¼ 6D0
t
B

t

t
þ 1� e�tB=t

� 	
; D0 ¼

T

Nz
�M�1. (23)

Fig. 1 contains the results of calculations for the displacement of a macromolecule of the length M ¼ 25Me

(value of parameter w ¼ 0:04) for this mechanism. The displacement, as a function of the ratio t=t�, has
a plateau which is the longer the longer the macromolecule. The value of the function on the plateau is
defined as

x2 ¼
6Tt
NzB

¼ 6D0
t
B
. (24)
1

1 10 100 1000

0.1

0.1

0.01

0.01
0.0001

0.001

0.001

�
/R

2

t / �*

Fig. 1. Displacement of macromolecule vs. time. The solid straight line, accompanied by the filled circles—the results of numerical

solution of Eqs. (A.3) and (A.4) at Fa
i ¼ 0, depicts the analytical result for the Rouse dynamics. The solid curve represents the other

analytical results—the displacement for a macromolecule of length M ¼ 25Me ðw ¼ 0:04Þ in an isotropic situation calculated according to

Eq. (23) with corresponding (according to relations (17) and (18)) values of parameters c ¼ 8:27 and B ¼ 429. The two dashed straight

lines depict the asymptotic results for the displacement D�t1=2 and D�t according to Eq. (20). The open symbols present the results of

simulation for the above values of parameters c and B and values of parameters of local anisotropy ae ¼ 0, ai ¼ 0 (circles); ae ¼ 0, ai ¼ 0:3
(squares); ae ¼ 0:3, ai ¼ 0 (diamonds) and ae ¼ 0:3, ai ¼ 0 (triangles, c ¼ 0 in this case).
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For large times of observation tbt; the mean displacement of the macromolecule, according to Eq. (23), is
unrestricted and proportional to time with the coefficient of diffusion

D ¼ D0B�1�M�3:4. (25)

The introduction of local anisotropy in the model of generalised Cerf-Rouse modes changes the situation:
mobility of the macromolecular coil increases as can be seen in Fig. 1, so that one can choose a particular
value of the coefficient of local anisotropy of external resistance in order to obtain the correspondence with the
reptation-tube model. The results of estimation of coefficient of self-diffusion due to simulation for
macromolecules with different lengths are shown in Fig. 2. The introduction of local anisotropy practically
does not affect the coefficient of diffusion below the transition point M�, the position of which depends on the
coefficient of local anisotropy. For strongly entangled systems ðM4M�Þ, the value of the index �2 in the
reptation law is connected only with the fact of confinement of macromolecule, and does not depend on
the value of the coefficient of local anisotropy. At the particular value ae ¼ 0:3, the simulation reproduces the
results of the conventional reptation-tube model (see Eq. (21)) and corresponds to the typical empirical
situation ðM� ¼ 10MeÞ.

So, at a certain value of the coefficient of anisotropy of the external local resistance, the Doi–Edwards
theory and the proposed in this paper consideration give the coinciding dependences for t4ð3Þð2Þp2t�.
Moreover, the theories give practically identical results for the region between points t � t� and t � ð3Þð2Þp2t�,
as one can see in Fig. 1. However, the dependences in the intermediate region below t � t� are different, and
the theories present different physical pictures of diffusion for the intermediate times. According to the
proposed theory, a macromolecule begins to feel the environment, when the mean squared displacement,
independently on the length of macromolecules of the system, reaches the value

DðtÞ ¼ x2. (26)

The deviation of the displacement of a macromolecule from the Rouse behaviour is conventionally considered
as a sign of the presence of the entanglements with the neighbouring macromolecules, and the above picture
corresponds to the conventional image of the tube as a tube, the diameter of which does not depend on the
1

1 10 100 1000

0.1

0.01

0.001

0.0001

M/Me

D
 / 

D
0

Fig. 2. Coefficient of self-diffusion of a macromolecule. Each point is calculated as the ratio of asymptotic values of the displacement of a

macromolecule for large times (see an example of dependence in Fig. 1) to values of displacement for the Rouse case at corresponding

values of the parameters B and the values of the other parameters: c ¼ 0, ae ¼ 0:3, ae ¼ 0 (the circles) and c ¼ 0, ae ¼ 0:1, ae ¼ 0 (the

squares). The slope of the dashed lines is �2:4 for short macromolecules and �1 for long ones, so that the simulation gives the well-known

dependence D�M�2 for coefficient of self-diffusion of macromolecules in strongly entangled systems.
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length of macromolecules. In the Doi–Edwards theory, a macromolecule begins to feel the environment at the
mean square displacement, which decreases as M�1 as the length of macromolecules of the system increases,

DðtÞ ¼ 6D0te; te ¼
4p2

3

x4

hR2i2
t��M0. (27)

In this case, we have to imagine that the neighbouring entanglements are parted by a distance, which decreases
when the length of macromolecules increases. Though this image seems to contradict to the conventional
picture of the phenomenon, the decisive sentence must be said by experiment. Nevertheless, one can propose
possible corrections to relations (20), which can, for example, have the following approximate form:

DðtÞ ¼

6D0t; top2
x2

hR2i
t�;

x2; p2
x2

hR2i
t�otot�;

4x2
D0

hR2i
t

� �1=2

; t�oto3
2
p2t�;

6Dt; t43
2
p2t�:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(28)

These relations are valid for the strongly entangled systems, when the length of macromolecule M410Me.
The available [16] molecular-dynamics numerical experiments deal with macromolecules of shorter lengths
and can be used neither to confirm nor to reject these relations, also as original relations (20).

3.2. Mobility of the particles of a chain

To find an analytical expression for the mean square displacement DaðtÞ of the ath particle of the chain in
linear approximation, it is convenient to transform expression

DaðtÞ ¼ h½r
aðtÞ � rað0Þ�2i

to normal co-ordinates and to separate the zeroth normal co-ordinate, so that one has the relation

DaðtÞ ¼ DðtÞ þ 2
XN

g¼1

QagQagðhq
gð0Þqgð0Þi � hqgðtÞqgð0ÞiÞ, (29)

where the transformation matrix Qag is given by Eq. (A.13). The displacement of the centre of mass of the
macromolecule DðtÞ in this approximation is defined by Eq. (23), and the equilibrium correlation functions in
the overdamped regime ðm ¼ 0Þ are provided [7] by relations

hrai ðtÞr
a
kð0Þi ¼

dik

2mla
Sþa exp �

t

2tþa

� �
� S�a exp �

t

2t�a

� �� �
, (30)

S�a ¼
tRa ð1þ Bþ EÞ � t�a

tþa � t�a
; 2t�a ¼ ta � t2a � 2ttRa

� �1=2
,

ta ¼
t
2
þ tRa ð1þ Bþ EÞ ¼ t�B wþ

1

a2
ð1þ E=BÞ

� �
; w ¼

t
2Bt�

. (31)

The modified Cerf–Rouse modes of a macromolecule in an entangled system determine two conformation
relaxation branches tþa and t�a .

As an example, the time dependences of the displacement of the mass centre and the central particle of a
chain, due to Eqs. (23) and (29), are shown in Fig. 3 alongside with the results of simulation for certain values
of the parameters. The dependences are characterised by the different mobility for short and long times of
observation. The displacement of any particle of the chain is similar to the displacement of the entire
macromolecule. The difference between analytical and simulation results in the region of large times is
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Fig. 3. Displacement of the central particle of a chain. The results for a macromolecule of the length M ¼ 25Me ðw ¼ 0:04; B ¼ 429Þ.

Analytical results available in the linear approximation are depicted for displacement of the centre of mass by the thick solid line and for

displacement of the central particle of the chain by the thin lines for different values of c: 0 (the top curve), 8.27 and 30. The points show

the results of numerical calculation of the displacement of the centre of mass (circles) and the central particle of the chain at the above

values of the parameter B, values ae ¼ 0:3, ai ¼ 0 and different values of c: c ¼ 0 for the diamonds and c ¼ 8:27 for the triangles. In the

region of big times, the simulation results approach the dashed line—the displacement due to the reptation-tube theory.
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connected solely with the influence of the parameter of local anisotropy. The mobility of the mass centre of a
macromolecule is not affected by the forces of internal resistance, in particular, by the coefficient c. However,
the mobility of the separate particles of the chain depends on the coefficient of internal resistance c. One can
see in Fig. 3 that the displacement of the central particle of the chain is the closer to the displacement of the
mass centre, the bigger the coefficient of internal resistance c. The increase in internal resistance is followed by
increase in confinement of particles of the chain. It means that, at E=Bb1, the mean displacement of every
Brownian particle in a chain is severely restricted: the particle does not go further that the distance x for a time
t=B, and the macromolecule appears to be effectively localised, so that relation (24) can be taken, indeed, as a
definition of the radius of the tube postulated in the Doi–Edwards model. For observation times t5t; the
small-scale motion of the particles confined to the scale x can take place, and the large-scale chain
conformation is frozen.

3.3. Conformational relaxation

The rates of relaxation tgðtÞ at the moment t, or, in other words, the current relaxation times of the
macromolecular coil can be directly calculated as

tgðtÞ ¼ �
1

2

d logðMgðtÞ=Mgð0ÞÞ

dt

� ��1
; g ¼ 1; 2; . . . ;N, (32)

where MgðtÞ ¼ hq
gð0ÞqgðtÞi=3 is an equilibrium correlation function of the normal co-ordinate g.

For the modified Cerf-Rouse dynamics (1)–(4) in linear approximation (8), the equilibrium correlation
functions are given by Eqs. (30), which contain two conformation relaxation times tþa and t�a for every mode.
The largest relaxation times

tþa �
t
2
þ tRa ð1þ Bþ EÞ; a ¼ 1; 2; 3; . . . (33)

have appeared to be unrealistically large for strongly entangled systems, whereas the reptation-tube model
gives reasonable estimates of relaxation times. According to Doi and Edwards [15, p. 196], the time behaviour
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of the equilibrium correlation function MaðtÞ is described by a formula which is identical to the formula for a
chain in viscous liquid, while the Rouse relaxation times are replaced by the reptation relaxation times

MaðtÞ ¼
1

2mla
exp �

t

2trepa

� �
, (34)

trepa ¼
zx2N3

2p2 T

1

a2
¼

3hR2i

x2
t�

a2
¼

3

2

p2

w
t�

a2
�M3; a ¼ 1; 2; . . . ;5N, (35)

where z is the friction coefficient of a Brownian particle, M is the length or the molecular weight of the
macromolecule, hR2i is the mean squared end-to-end distance of the macromolecule and t� is the largest
relaxation time of the macromolecule in ‘monomer’ liquid—characteristic Rouse relaxation time.

The linear normal co-ordinates appear to be useful also in the considered non-linear case, though, in this
case, the modes are connected with each other. The rates of relaxation for the first and the third modes, which
are calculated from correlation functions (30) and (34) for the chain with M ¼ 25Me, are depicted in Fig. 4 by
solid and dashed lines, correspondingly. The simulation of linear case reproduces (with large scattering, so as
the changes of the correlation functions in this region are small) the theoretical dependence of the relaxation
rates on the current time. The introduction of the local anisotropy of external resistance alone does not affect
the relaxation times, in contrast to the local anisotropy of the internal resistance. The latter provokes changes
of the largest relaxation times of the macromolecular coil, which is the bigger the bigger the coefficient of the
local anisotropy of external resistance. Asymptotic values of the relaxation times are estimated for each case as
the mean values of the numbers of the rate of relaxation in the interval from 0:7 t� to 10 t�. A particular choice
of the coefficients ae ¼ 0:3 and ai ¼ 0:06 determines the value t1 ¼ 417t� for the relaxation time of the first
mode, which is close to the reptation relaxation time 370 t�. The calculated relaxation times of the third mode:
t3 ¼ 315 t� is a few times as much as the corresponding reptation relaxation time 41:1 t�, which indicates that
the dependence of the relaxation times on the mode label is apparently different from the law (35). It is clearly
seen in Fig. 5, where the dependence of the relaxation times of the first six modes of a macromolecule on the
coefficient of internal anisotropy is shown. The relaxation times of different modes are getting closer to each
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Fig. 4. The rate of relaxation of a macromolecule. The rates of relaxation of the first and the third modes of a macromolecule, estimated,

due to relations (32), for the macromolecule of length M ¼ 25Me ðw ¼ 0:04; B ¼ 429; c ¼ 8:27Þ. The results derived from analytical

correlation function (30) are depicted by solid lines. By straight dashed lines, the values of the relaxation times due to the Doi–Edwards

model are presented. The filled (for the first mode) and empty (for the third mode) points depict the results of simulation for above values

of parameters c and B and values of parameters of local anisotropy ae ¼ 0, ai ¼ 0 (circles); ae ¼ 0, ai ¼ 0:3 (triangles); ae ¼ 0, ai ¼ 0:1
(diamonds) and ae ¼ 0:3, ai ¼ 0:06 (squares).
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times (see examples of dependences in Fig. 4) for a macromolecule of length M ¼ 25Me ðw ¼ 0:04; B ¼ 429; c ¼ 8:27Þ with the value of

the coefficient of external local anisotropy: ae ¼ 0:3. The dashed lines reproduce the values of the relaxation times of the macromolecule

due to the reptation-tube model. The labels of the modes are shown at the lines.
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other with increase of the coefficient of internal anisotropy. The values of the largest relaxation time of the first
mode for different molecular weights are shown in Fig. 6.The results demonstrate a drastic decrease in values
of the largest relaxation times for strongly entangled systems induced by introduction of local anisotropy. The
position of the transition point depends on the coefficient of internal anisotropy and is independent on the
diffusion transition point discussed in Section 3.1. It can be estimated [8], due to measurements of viscoelastic
properties, as M� � ð4:6� 12:0ÞMe, which corresponds to values of the coefficient of internal anisotropy
0.05–0.15 at the value of the coefficient of external anisotropy ae ¼ 0:3. The evaluation of relaxation times
could not be done with great accuracy in this investigation, so that the dependence of relaxation times both on
the mode label and on the length of macromolecules remains to be studied. A more detailed investigation of
effects of the local anisotropy on the relaxation processes might require developing special methods and is left
for the future.

3.4. Quasi-elastic neutron scattering

Empirical evidence of the confinement of particles of the chain is provided by neutron scattering from
specially prepared samples of polymers [17,18]. In a reasonable approximation, the scattering function on a
single macromolecule can be calculated as

Sðk; tÞ ¼
1

N þ 1

X
a;g

exp �
1

6
k2
X3
i¼1

hðrai ðtÞ � r
g
i ð0ÞÞ

2
i

 !
. (36)

The double sum in Eq. (36) is evaluated over all Brownian particles of the macromolecule. In the above
equation, k is the vector in the direction of the scattering, having the length k ¼ ð4p=lÞ sinðy=2Þ, where l is the
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values of the coefficients of local anisotropy are: ae ¼ 0:3, ai ¼ 0:06 for the circles and ae ¼ 0:3, ai ¼ 0:15 for the squares. The solid line

depicts the analytical results for linear approximation. The dashed lines with the slope 1 reproduce the well-known dependence t1�M3 for

the relaxation time of macromolecules in strongly entangled systems.
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wavelength of particles of a initial beam and y is the scattering angle. If one excludes the correlation between
particles with different labels, scattering function (36) takes the form

Sðk; tÞ ¼
1

N þ 1

XN

a¼0

exp �
1

6
k2DaðtÞ

� �
, (37)

where the mean square displacement DaðtÞ ¼ h½r
aðtÞ � rað0Þ�2i of the particle a is determined by expression (29).

The scattering function (37) is shown in Fig. 7 by the dashed lines. There are no available analytical results
for function (36), the dependences, shown in Fig. 7 by solid lines, are obtained by simulation for ae ¼ 0, ai ¼ 0.
The scattering functions are close to each other, in both cases they are characterised by a step or a plateau,
which exists at large values of the parameter of internal resistance c. The value of the function on the plateau
depends also on the external and internal local anisotropy, however, at typical values (see the previous
Sections) of coefficients ae ¼ 0:3, ai ¼ 0:1, the effect is small. One can easily see that all the properties of
functions DaðtÞ in Fig. 3 are reflected in the scattering functions: the step in the scattering functions (Fig. 7)
corresponds to the plateau on the curve of the displacement of the particles (Fig. 3). For very long
macromolecules, the value of the scattering function in the plateau region is connected directly with the
intermediate length x

Sðk; tÞ ¼ exp �
1

6
k2x2

� �
;

t
B
otot. (38)

The step on the scattering function, which is revealed in empirical observations [17,18], is apparently
connected with confinement of the macromolecule in ‘the tube’, and is an effect of the first order in respect to
co-ordinates in the equations of macromolecular dynamics. The introduction of the terms of higher order,
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Fig. 7. Scattering function of a macromolecule. The results for a macromolecule of the length M ¼ 25Me ðw ¼ 0:04; B ¼ 429;c ¼ 8:27Þ.
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describing the motion of the macromolecule along its axis (the reptation motion), gives the corrections to the
dependence in the region of large times.
4. Conclusion

Thus, one can see that a possible extension of the conventional reptation-tube model of macromolecular
dynamics can be formulated as the Rouse model in the presence of a random dynamic force. The generalised
model provides the confinement of a macromolecule in the tube and easier (reptation) motion of the
macromolecule along its contour—the features, which were envisaged by Edwards [1] and de Gennes [2] for
the entangled systems. The results of the conventional reptation-tube model for both mobility and relaxation
times of macromolecular coil follow from the generalised model at particular choice of the parameters of
the model. It does not mean, of course, that the particles of the chain are moving in the way prescribed by the
conventional reptation-tube model. Both the radius of the tube and the positions of the particles in the
Doi–Edwards model are, in fact, mean quantities from the point of view of the considered model of underlying
stochastic motion. The radius of the tube of the conventional reptation-tube theory is interpreted as the mean
displacement of the particles of the chain in the plateau region—this is an intermediate length x, connected
with the correlation time t (Eq. (24)), and the mean positions of selected particles can be calculated on the base
of dynamic equations (5), (6), (12) and (13) to establish a complete correspondence to the conventional
reptation-tube model. The direct introduction of the mean quantities to describe dynamics of macromolecule
led to the oversimplified, mechanistic model, which is believed [4] to work well for very long macromolecules
ðMb10MeÞ, but needs in amendments (the constraint-release mechanism, contour-length fluctuations and so
on) to describe the behaviour of shorter macromolecules, while the model is not applicable below the
transition point ðMo10MeÞ at all [8]. In contrast to it, the generalised model is relevant to the systems of
macromolecules with the lengths above 2Me. Whereas one needs only in isotropic stochastic motion to explain
dynamic effects in weakly entangled systems (the length of macromolecules Mo10Me), the introduction of
local anisotropy of motion, which leads to motion of the macromolecule along its contour (the reptation
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motion), is necessary for consistent explanation of dynamic effects in strongly entangled linear polymers (the
length of macromolecules M410Me).

The generalised description contains, apart of the conventional characteristic Rouse relaxation time t� and
the three mesoscopic parameters introduced earlier in the linear macromolecular dynamics: t, B and E, two
more parameters characterising the local anisotropy of mobility. While the first three parameters were
identified due to the requirement of correspondence of the derived results to empirical situations, the
parameters of the local anisotropy can be identified due to the requirement of correspondence of the derived
results to the results of the Doi–Edwards theory. The developed description does not require specific
hypotheses; it is a sort of phenomenological (mesoscopic) description, which allows one to get a consistent
interpretation of experimental data connected with dynamic behaviour of linear macromolecules in both
weakly and strongly entangled polymer systems in terms of a few phenomenological (or better, mesoscopic)
parameters. The adequate mesoscopic equation allows us to develop theory of different relaxation phenomena
(diffusion, viscoelasticity, optical birefringence, neutron scattering, dielectric relaxation and so on) and, in
particular, to formulate constitutive equations for linear polymers, which, due to the difference of mechanisms
of relaxation, appear to be different for the two types of entangled systems. Apart of empirical justification,
the mesoscopic effective-field approach itself is needed in proper microscopic justification. The characteristics
of reptation motion can be also deduced from geometrical and topological aspects of macromolecular
dynamics [19,20], so that the parameters of the theory eventually could be linked with details of structure of
entangled systems. It was convincingly shown by simulating the behaviour of the systems numerically, that the
intermediate length correlates with characteristics of topology [21]. One can believe that the developing
methods [19,20,22,23] can be helpful to bring a microscopic justification of a single-macromolecule equation in
the entangled systems.
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Appendix A. Method of simulation

A.1. Dimensionless form of dynamic equations

It is convenient to use the time scale t� and the length scale R ¼ hR2i0:5 to define dimensionless variables by
the relations

d

dt
¼

1

t�
d

ds
,

rai ¼ RRa
i ,

ua
i ¼

R

t�
Ua

i ,

Fa
i þ Ga

i þ
~fa

i ðtÞ ¼
zR

t�
Fa

i ,

so that the system of Eqs. (5), (6), (12) and (13) for macromolecular dynamics can be written in the form

dRa
i

ds
¼ Ua

i ,

m

zt�
dUa

i

ds
¼ �Ua

i þ Fa
i �

N2

2p2
AagR

g
i þ f̄ a

i ðsÞ,
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2wB
dFa

i

ds
¼ �Fa

i � BH
ag
ij U

g
j � EG

ag
ij U

g
j þ

~f a
i ðsÞ,

f̄ a
i ðsÞ ¼

t�

zR
f̄a

i ðt
�sÞ; ~f a

i ðsÞ ¼ wB
d ~fa

i

ds
þ ~fa

i ðsÞ,

hf̄
g
i ðsÞf̄

m
j ðs
0Þi ¼

t�

zR

� �2

hf̄g
i ðt
�sÞf̄m

j ðt
�s0Þi ¼

N

3p2
dgmdijdðs� s0Þ, (A.1)

h ~f g
i ðsÞ

~f m
j ðs
0Þi ¼

N

3p2
BðH

gm
ij þ cG

gm
ij Þdðs� s0Þ. (A.2)

The inertial effects can be neglected ðm ¼ 0Þ, so that the above system of equations can be simplified

dRa
i

ds
¼ Ua

i ,

dFa
i

ds
¼

1

2wB
ð�Fa

i � BH
ag
ij U

g
j � EG

ag
ij U

g
j þ

~f a
i ðsÞÞ,

Ua
i ¼ Fa

j �
1

2

N2

p2
AagR

g
j þ f̄ a

j ðsÞ. (A.3)

To satisfy relations (A.1) and (A.2), the random processes have to be given as

f̄
g
i ðsÞ ¼

N

3p2

� �1=2

ḡ
g
i ðsÞ,

~f g
i ðsÞ ¼

N

3p2
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� �1=2
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i e
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j ðsÞ
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i e

g
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g
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XN

a¼0

ðAidij þ Cie
a
i eaj Þ ~gi

a
j ðsÞ

" #)
,
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ae

p
,

Ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ aiÞN=2ð1þNÞ

p
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� aiÞN=ð1þNÞ

p
, (A.4)

where ḡ
g
i ðsÞ, ~ge

g
j ðsÞ and ~gi

g
j ðsÞ are independent Gaussian random processes with the dispersions equal to unity.

A.2. Algorithm of numerical calculations

We use the simplest method (the Eyler method, with the step of integration h) to solve Eqs. (A.3)
numerically

Ra
i ðsþ hÞ ¼ Ra

i ðsÞ þ hUa
i ,

Fa
i ðsþ hÞ ¼ Fa

i ðsÞ þ
h

2w
�

1

B
Fa

i �H
ag
ij U

g
j � cG

ag
ij U

g
j þ D ~f a

i ðsÞ

� �
,

Ua
i ¼ Fa

j �
N2

2p2
AagR

g
j þ Df̄ a

j ðsÞ. (A.5)

The random forces are defined here as

Df̄ a
j ðsÞ ¼

1

h

Z sþh

s

f̄ a
j ðuÞdu; D ~f a

j ðsÞ ¼
1

hB

Z sþh

s

~f a
j ðuÞdu.
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Calculating the dispersions of the random processes Df̄ a
j ðsÞ and D ~f a

i ðsÞ, one has to take into account relations
(A.1) and (A.2) for the random forces in the continuous case, so that in the discrete approach one has

hDf̄
g
i ðsÞDf̄

m
j ðs
0Þi ¼

N

3p2h
dgmdijdðs� s0Þ, (A.6)
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i ðsÞD ~f

m
j ðs
0Þi ¼

N

3p2hB
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gm
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gm
ij Þdðs� s0Þ. (A.7)

It is easy to see that, the expressions for the random forces have to be similar to relations (A.4), that is
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. ðA:9Þ

To solve the system of Eqs. (A.5), initial values of the co-ordinates and the extra random force has to be
chosen. We accept that

R0
i ð0Þ ¼ 0,

Ra
i ð0Þ ¼ Ra�1

i ð0Þ þ
1

ð3NÞ0:5
ga

i ; a ¼ 1; 2; . . . ;N; i ¼ 1; 2; 3, (A.10)

Fa
i ð0Þ ¼ 0; a ¼ 0; 1; 2; . . . ;N; i ¼ 1; 2; 3, (A.11)

where ga
i is a Gaussian random process with dispersion equal to unity.

As a result of calculation, one has the positions of the particles

Ra
i ðsÞ; a ¼ 1; 2; . . . ;N; i ¼ 1; 2; 3; s ¼ 0; h; 2h; 3h; . . . .

To analyse the phenomena of diffusion and relaxation, it is convenient also to use the normal co-ordinates
defined as

rgi ðsÞ ¼ QagR
a
i ðsÞ; g ¼ 0; 1; 2; . . . ;N; i ¼ 1; 2; 3. (A.12)

The transformation matrix Q is assumed orthogonal and normalised. In this case, the components of the
transformation matrix are defined as

Qag ¼
2� d0g
N þ 1

� �1=2

cos
ð2aþ 1Þgp
2ðN þ 1Þ

. (A.13)

Note that steady-state situations are investigated, so that the end-to-end distance hR2i and the mean gyration
radius

S2 ¼
1

1þN

XN

a¼0

X3
i¼1

ðRa
i �QiÞ

2; Qi ¼
1

1þN

XN

a¼0

Ra
i (A.14)

must be constant on average. The mean kinetic energy for one degree of freedom also must be constant

1

3ð1þNÞ

XN

a¼0

X3
i¼1

Ua
i Ua

i�const. (A.15)

The above conditions allow one to monitor whether the fluctuation–dissipation relations are valid during
calculations.
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A.3. The mean quantities

The calculated co-ordinates allow us to estimate mean value of any, depended on co-ordinates, quantity.
For example, the displacements of the mass centre of the macromolecule and each particle of the chain are
calculated as

DðtÞ ¼ hR2i
X3
i¼1

h½QiðsÞ �Qið0Þ�
2i, (A.16)

DaðtÞ ¼ hR
2i
X3
i¼1

h½Ra
i ðtÞ � Ra

i ð0Þ�
2i; a ¼ 0; 1; . . . ;N, (A.17)

where the centre of mass of the chain Qi is proportional, according to Eqs. (A.12) and (A.14), to the normal
co-ordinate corresponding to the zeroth eigenvalue (the diffusion mode)

QiðsÞ ¼
1

1þN

� �1=2

r0i ðsÞ ¼
1

1þN

XN

a¼0

Ra
i ðsÞ; i ¼ 1; 2; 3. (A.18)

The results of simulation of different quantities are shown in Figs. 1–6. The calculations are fulfilled for the
number of subchains N ¼ 10 at the step of integration h ¼ 0:001, the number of realisations was different
from 100 to 10,000 in different cases. The results for the entire chain do not depend on the arbitrary number N

of subchains, though mobility of separate particle of the chain depends on the number N of subchains as N�1.
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