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Abstract

The paper proposes an explanation of the second critical point in viscoelastic behaviour of linear polymers, position of which, according to
Ferry (1980), is empirically estimated &6 ~ (4.6 — 12) M, whereM, is the length of the macromolecule between adjacent entanglements’.
The paperbegins with an introduction to the dynamics of a single macromolecule in the entangled system. Diffusive and reptation mechanisms of
relaxation of macromolecules are considered and compared, which allows one to introduce the division between weakly and strongly entangled
systems and to calculate the dynamic transition poilfas: 10M.. Three types of linear polymer systems ought to be considered, according
to the ratio of the length of the macromoleciMeto Me: M < 2M, — non-entangled system)2 < M < 10M, — weakly entangled systems
andM > 10M, — strongly entangled systems. Reptation motion of macromolecules can be noticeable only in the strongly entangled systems.
It is shown for these systems that contribution of reptation relaxation in low-frequency linear viscoelasticy can be neglected, while one has to
take reptation relaxation into account to obtain the correct dependence of effects of the second order on the length of the macromolecule.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction the classification of linear polymer solutions and melts
[1,2]. The law for coefficient of viscosity, which was con-
Linear viscoelasticity is conveniently characterised by the firmed for all polymer system which were investigated,
dynamic modulus5 (w) which depends on frequenay. To determines the first critical poin¥; separating entangled
analyse the results, one also considers asymptotic behaviouand non-entangled systems of linear polymers
of the dynamic modulus at high and low frequencies. In the
latter case . { M, M < M, non-— entangled systems

34 (1)
M>*, M > M., entangledsystems

G(w) = —ion + w?v.

. . _ , _ While the above formula is valid in the whole region above
The expansion determines the terminal quantity: the vis- M

. Hici d the elastici ffici hich ¢ & 2M,, where Mg is the length of the macromolecule
_cosny.coe icienty an the eastlc_lty coe 'C'e,m which, between adjacent entanglements’, the dependence of termi-
in their turn, determine the terminal relaxation time and

q i dinal nal relaxation time is different (Ferry, 1980) for weakly and
steady-state compliance, correspondingly, strongly entangled systems and determines the second crit-
v v ical point M*

The dependencies of the terminal characteristics on the? ™

length of macromoleculeds appeared to be decisive for

M**, M < M*, weakly entangled systems
M34 M > M*, strongly entangled systems

The data for melts of different polymers collected by Ferry
*Corresponding author. [[1], p 379, Table 13'”'], Whlle aCCeptlnMC ~ 2Me, al'
E-mail addressvpok@waldonet.net.mt (V.N. Pokrovskii). lows us to estimate the second critical point as
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M* ~ (4.6 — 12.0) M. (3) ticeable and these are the system to which the results of the-
ory [8] are applied. IrSection 4viscoelasticity of strongly

One can think that there are more recent numbers, butentangled systems will be considered and will be shown that,

we believe that the above data are typical. It is remarkable though the reptation motion is present, contribution of the

that linear and non-linear viscoelastic behaviour of linear reptation branch into low-frequency linear viscoelasticy can

polymers with molecular weight less than a certain criti- be neglected, so that, to obtain the correct exponent 3.4 for

cal value is different from that of the system with longer the molecular weight scaling of the terminal relaxation time

macromolecules. The very existence of the transition point and zero-shear viscosit§¢s. (1) and (39) one has to refer

between weakly and strongly entangled systems can be conio the constraint-release mechanism. However, one has to

sidered as empirical fact which has to be explained. take reptation relaxation into account to obtain the correct
The concept of reptation relaxation of a macromolecule dependence of effects of the second order on the length of

was used to explain the effects of viscoelasticity in entangled macromolecules. Considering the dilute blends of polymers

polymerq3,4]. However, one can see that this theory was de- in Section 5allows us to collect extra arguments in favour

signed to describe a case, when ~ MO, n ~ M34, thatis of the proposed theory. The Conclusion contains discussion

the case of strongly entangled systems. Simultaneously, oneof the problem and consequences for constitutive relations.

can note that an alternative approdsh which is based on

suggestion that isotropic stochastic motion of the segments

of the macromolecules is possible in an entangled system,> M odes of motion of a macromolecule in an

can be applicable for weakly entangled systems. Indeed, itentangled system

givest/n ~ M, in accordance with the abo¥gs. (1) and

(2) for weakly entangled systems. Note that the alternative 5 1 \odified Cerf-Rouse modes

approacHh5], at slow motion, is formally equivalent to the

constraint-release theofy] and can be considered as afor- 5 1 1 Equation of motion

mal time-dependent generalisa_tion of the Iatt(_ar. Thus, Oneé |t js known [4,6], that every flexible macromolecule can
can suppose that two mechanisms of relaxation: reptationpq effectively presented as a chain of coupled Brownian par-
and diffusive (constraint-release) are possible in entangledyjcjes (so called bead and spring model), and one can follow
systems, the transition point between weakly and strongly Zwanzig-Mori method described, for example, in mono-
entangled systems is determined by the competition of thesegraphS [9,10] to obtain an equation for the large-scale

mechanisms. To calculate a po_sition of the transition point, giqchastic dynamics of the entangled system as dynamics
we compare the above mechanisms and refer to two models ¢ interacting chains of Brownian particles. The situa-

while one of them imitates the basic isotropic stochastic mo- tjon can be simplified more, if one use, similar to works
tion of a particle among the neighbouring chaj&s] and [11-14] the projector-operator methods once more to de-
the other is needed to describe special motion of the macro-;je a dynamic equation for a single chain in the system
molecule — the original non-amended Doi-Edwards model of entangled chains. In virtue of the results of these works,
[3]. It is important that the considered models are consis- it s natural to present the anticipated dynamic equation
tent: the localisation of the macromolecule in a tube, pos- for a chain as stochastic equation with memory function
tulated by the second mOd‘?l is justified by the first mpdgl terms. Dynamics of the probe macromolecule is simplified
[6]. The radius of the tube is calculated as a dynamic in- by the assumption that the neighbouring macromolecules
termediate length through phenomenological parameters ofcan e described as a uniform structureless medium and
the first model. Two models appear to be complementary 5 important interactions can be reduced to intramolecular
models and one can combine the results. _ interactions. The requirements of proper covariance and of
The objective of the paper is to discuss a possible mech-ine jinearity in co-ordinates and velocities determ[6
anism of transition betweep weakly and strongly entangled e general form of the equation for the dynamics of the
linear polymers. For consistency of the paper, the funda- single macromolecule. In the linear approximation, one can
mentals of dynamics of a macromolecule in the system of consider the situation for every Brownian particle to be
macromolecules are discussed and the linear normal mOde%otropic and the mutual hydrodynamic interaction of the
of the system are described $ection 2 the omitted de-  particles to be negligible, so that effective dynamics of the

tails can be found in the monograpls6]. The purpose of  gingle chain as the dynamics of coupled Brownian particles
this Section is to describe the foundations and main featuresjg described by a set of coupled stochastic equations

of the mesoscopic approach. $ection 3 diffusion and re-

laxation processes in entangled systems are discussed. The 42, 00

division between weakly and strongly entangled systems ism dtzl =- / Bs) (' — vijri)i—s ds
introduced here, and the dynamic transition point is calcu- Ooo

lated aSM* ~ 10Me. Rela>.<ati0n behaviour of the different _ / Gay(p(s)(;}l?/ — wij r}/),_s ds
systems is different: only in the strongly entangled systems 0

effects of reptation relaxation of macromolecules can be no- - ZMTAayrl?” + ¢ (1) (4)
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wherem is the mass of a Brownian particle associated with g2 Jo o » "

a piece of the macromolecule of lengWy N, r* and;* are Mgz = —/0 B (] — vil o] )i—s ds

the co-ordinates and velocity of the Brownian particle and 00

2Tu is the coefficient of elasticity of the spring between - / 0($) (P} — wil pf)i—s ds

adjacent particlesT is temperature in energy units. The 0

matrix A, depicts the connection of Brownian particles in —2uThapi (1) + 07 (1), (8)

EZ?n?snth:;en(t::i?]Ii:.thT]Z dﬁ;ﬁg:;’?;ﬁ:ﬁ;{grZgge;g?tfhzy tWOWhere the variablp? is proportional to the mass centre of the
o . : ] macromolecular coil (diffusion mode), variable$, =
first integral term on the right-hand side Bfy. (4) is the N I (diffusi ), variablgs, = «

hvdrodvnamic drag force in the medium moving with mean 1,2,..., N describe relative positions of the particles in
ydrodynamic drag force € mediu oving €aN ihe coil (relaxation modes). Whatever the specification of
velocity gradientvjj, so that a particle located at a point

- ! ! . . h f i i (7 ine li
with co-ordinates? is dragged with velocity; . The sec- the memory functions isgs. (7) and (8pletermine linear

d dissipative term i (4)h ‘ d I, t0 Cerf modes of motion of the macromolecule in polymer melts —
ond dissipative term Iiq. (.) as aform simiiarto Lerts —ynqo modified Cerf-Rouse modes. Note that a particular case
approximation[15] of the internal viscosity force for a

macromolecule in a dilute solution and, thus, represents theOf Eas. (7) and (8)s a simple equation

intramolecular resistance (kinetic stiffness). Due to the vor- g2 5«

ticity term wj = 1/2(vij — vji), the latter term does not de- dtzl = =7 —vitp]) — 2uThapf (1) + o7 (1),

pend on the rotation of the macromolecular coil as a whole. «a=0,1,...,<N, 9)

The symmetrical numerical matri%,, represents the influ-

ence of movement of the particjeon the movement of the  which describes normal modes of motion of the macro-

particlea which is considered to be smallat «, so that it molecule in a viscous ‘monomeric’ liquid. This dynamics is

is expected to be almost diagonal. As an initial approxima- commonly referred to as the Rouse dynamics and indepen-

tion, to express the idea of severe confinement, one can asdent variableg® in (9) as to Rouse modes.

sume that the intramolecular resistance force is determined Statistical properties of the random thermal forces in

equally by all the particles of the chain, so that one has for the Egs. (7) and (8are, as usual, defined in such a way, that the

matrixes: equilibrium values of the calculated quantities are the same
as those already known. The scalar correlation function of

1 10 ...0 the random force can be introduced

-1 2 -1 ... 0

(of' ()0 (t = 9)) = K(5)3ayjj- (10)

Fourier transform of the correlation function is connected
0 0 0 1 with the one-side transform of memory functions

K(w) = 2TReB[w] + ¢[w)).
1 -1)N ... -1/N
~1/N 1 ... —1N 2.1.2. Approximation of the memory functions
G— (5) The memory functiong(s) and¢(s) in Egs. (7) and (8)

) cannot be determined from general considerations: they
could be found theoretically as correlation functions of
-1YN -1/N ... 1 the random force in microscopic dynamics of interacting
) ) . Kuhn-Kramers chains, or, otherwise, the memory functions

We have chosen the simplest form of the symmetric matrix o4t to chosen in such a way, that the final results describe
Gy, consistent with the requirement that the matrix must empirical facts. At the moment, we have no choice as to
have a zero eigenvalue. This form allows the maGi%, |50k for empirical memory functions. However, it appears
to be transformed into diagonal form simultaneously with {, pe helpful to consider very slow and very fast deforma-

matrix Aoy . All eigenvalues of the matrit,,, besides the o of the system which elucidates causes and meaning of
zeroth one, are equal to unity, and eigenvalues of the matrix, dissipative forces iEq. (4)

Ay, for large N and smalk are given by

2.1.2.1. Intramolecular friction. For a fast enough defor-
mation (that is, before relaxation can occur), one expects
that the macromolecules deform affinely, i.e., for every
. . particle /¥ = vjjr%, wherevj is the velocity gradient, and
a set of uncoupled equations for normal co-ordinates o A X :
riis the position in space of a particle of a chain. Under

dzp? o0 .0 0 0 given deformation, the first term from the two terms for
"2 = _/o B)(pi = vitpp)i—s ds + 07 (1), ) dissipative force irEq. (4)is equal to zero, while the sec-
ond one generates a force proportionatte- wij rj.‘, where

AO,:(”—A‘;‘)Z, @=0,12....<N. (6)

After the transformation, the system B§. (4)turns into
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wijj Is the vorticity, ory;r}, wherey; is the symmetric part ered as a characteristic of the medium in which the probe
of the velocity gradient, so that this force is a force of the macromolecule is moving. Eventually, the consideration
intramolecular resistance due to the change in shape of thedetermines the friction coefficient of effective Brownian
macromolecular coil (kinetic stiffness). As far as we con- particle as
if;;tshirc%a:]ré%iagr:egged approx_|mat|on, all the_ ne|_ghbour|n_g§B(MO) N MS (11)

, or, y, the particles of coarse-grained chain

follow the deformation afﬁnely, and there is no apparent Where; is a ‘monomer’ friction coefficient andg(MO) is
cause for this force. To explain the emerging of the force, the measure of enhancement of the friction coefficient due
we have to refer to more detailed model of macromolecule tg the presence of neighbouring chains with the lengfgs
— to the chain of freely-jointed rigid segments. Apparently, |t js important that this mechanism introduces the depen-
small parts of macromolecules cannot follow the deforma- dence of coefficient of enhancement of the friction coeffi-

tion affinely, segments can only rotate, and an extra force gient on the length of the neighbouring macromolecules as
is needed to change the direction of a segment in the case g(p1,) ~ Mg.

when the segments of the other chains present around. That

is why we can say that the internal resistance force for 5 1 2 3. Concept of microviscoelasticityin the case, when
a macromolecule in a polymer melt has to be attributed e gpplies the coarse-grained approximation for the de-
to the interaction with neighbouring chains, though in the gcrintion of chains, each particle of the chain can be consid-
coarse-grained approximation we forget about segments,qreq as moving in a liquid, which represents a dense system
and this force is characterised by only phenomenological mage of the interacting rigid Kuhn segments. The effective
coefficient of internal resistance which can be denoted yedium has properties of relaxing liquid; thus, the concept
asiE. of microviscoelasticity, instead of the concept of microvis-
cosity in the case of dilute solutions, can be introduced. The
2.1.2.2. External friction. For very slow deformation of  times of relaxation of the surrounding medium are times of
the system, when all relaxation times are less than a char-re|axation of the mean orientation of segments. In a dense
acteristic time of deformation, the macromolecular coil System of |0ng linear macromo|ecu|eS, the motion of a sep-
keeps its equilibrium form, so that the force of internal arate segment is determined strongly by its environment,
resistance (the second dissipative ternEi (4) can be  pejng weakly dependent on its position in the chain. The
neglected, and the resistance-drag coefficient originatedsimp|est case assumes that one chooses the singlerfime

from the first dissipative term can be written down g so that one has the law of relaxation for mean orientation of
The dimensionless quantity is a measure of the increase  segments

in the friction coefficient, due to the fact that the particle is
moving among neighbouring macromolecules, perturbing M — _} ((eim _ }3"() (12)
them. Note that this situation is equivalent to that consid- dr

ered earlier in molecular terms by the constraint-release  1hig assumption allows us to write down simple expres-
theory, originated by_ Graesslgy] (a review of subsequent  gins for the one-sided Fourier transforms of the memory
work can be found in work of Watanaljg]), so that one functions

can use the resultf’] to estimate the molecular weight
dependence of the coefficient of enhancemsnt The Blw] = ¢ <1_,_ B. ) glw] = ij , (13)
constraint-release mechanism suggests that a large-scale 1-iwt 1

lateral motion of a macromolecule in an entangled system nerer is the monomer friction coefficient. One needs to in-
is possible due to process of release of some constraints,qce some characteristics of the environmsrthe mea-
of the probe chain and jumps some parts of the chain in g,1a of the increase of friction due to interaction with the
lateral direction. The lifetime of constraints depends ap- neighbouring macromolecules, aiidis the measure of in-

parently on dynamics of neighbouring macromolecules, y,mqlecular resistance (internal viscosity). One can see that
which is assumed to be the dynamics of the same type g ahove speculation is nothing more as an assumption that
as that of the probe macromolecule, and can be consid-ye enyironment of a Brownian particle is characterised by
the only relaxation time and the quantitiBsand E are phe-
10ne can note that, at slow motion, the constraint-release theory Nomenological (mesoscopic) characteristics of the dynam-
determines formally the dynamics of a probe macromolecule as a Rousejcs of a single macromolecule in the system of interacting
dynamics (of the form ofEq. (9), which can be attributed to as a  macromolecules. With comparison with results of molecular
certain _‘statlc’ method of consideration. Howevgr, as it was _noted rece_ntly theories (as above), the meaning of introduced parameters
by Schieber et al[16], the process of constraint release is developing . ’
in time and one needs in time scateof the matrix to describe the ~ Can be elucidated. Thus, one can assume that the parameter

process, so that the theory ought to be generalised for this case. One canB in EQ. (13)is a function of the length of the neighbouring
consider the stochastic model (4) as a formalisation (for slow motion) and macromolecules in the form

generalisation of constraint-release mechanisms which can be regarded as

the time-dependent constraint-release model. B~ M°. (14)
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One can consider the indéxo be an empirical index in ~ There are many internal relaxation modes, so that one has a
the theory, which has, as we seeSaction 4 the empirical set of relaxation times
values 24 - 3 in accordance with the theoretical estimate 3

2

due to the constraint-release theory. An alternative estima-tX =t*/o?, ©* = %;H ~M% a=12...<N.

tion of the index, from friction of moving overlapping coils 67T 20

[6], gives an estimate of the index 2. (20)
whereg is the friction coefficient of a Brownian particle ¢

2.1.3. Mobility of a macromolecule N—1), M is the length or the molecular weight of the macro-

It is known that the macromolecule in a viscous lig- molecule,(R?) is the mean squared end-to-end distance of
uid (dilute solution) moves as a Brownian particle and its the macromolecule and is the largest relaxation time of
mean square displacement is given by the standard expresthe macromolecel — a characteristic Rouse relaxation time.

sion For the modified Cerf-Rouse dynamics (8), an equilib-
_ rium correlation function can be fourjé] after simple cal-
(Ag*) =6Dot, Do~ M~ (15) culations
where Dg is the coefficient of the diffusion of the macro- 1 " t _ t
L . L My(t) = Srexpl ———— ) — S, exp| ———
molecular coil in viscous liquid which is inversely propor- 2urg | ¢ + o T,
tional to the length of macromoleculd for freely draining (21)
coils.
So as the co-ordinatgof mass centre of macromolecular Where o
coil is proportional to the zeroth normal co-ording, gt — ,(1+ B+ E)— 1]
it is not difficult to calculate[6], usingEgs. (7) and (13) « -1y '
the mean square displacement of the centre of mass of azrojlc . (fozz _ 2‘”5)1/2’
macromolecule in entangled system
v b b T T
(Ag®) =6Do (= +1—-e®/"). (16) e TTT oL e T o
B\t

where Do has the same meaning as in the previous formula. ¢, — ! + TS(l +B+E)=1*B <X + i(l + E/g)) ,
The displacement as a function of the rafio has a plateau 2 o?
which is the longer, the longer the macromolecule. Thevalue , _ 7
of the function on the plateau can be taken as a definition 2Bt*
of an intermediate length In contrast to the original Rouse modes, the modified
- Cerf-Rouse modes of a macromolecule in an entangled sys-
£ = GDOE a7 tem give two conformation relaxation branchgsandz, .
We shall consider the situation Bt>> 1 which allows us to

Up to intermediate lengtl the macromolecule diffuses  neglect the branch of small relaxation times. The largest re-
as a particle in viscous fluid. For long times of observation |axation times decreases monotonically fretiB + E) till
t > 7, the mean displacement of the particle is unrestricted /2, when the mode number increases. Further on, we are
and is proportional to time, so that the diffusion coefficient going to compare the relaxation times for small mode num-

can be determined frorigs. (15) and (163s bers, so that it is convenient to use the asymptotic formula
_ -1, as-1-8 *

D = DoB M . (18) T =(B+ E)rs, toFf =7

2.1.4. Relaxation times 1+ E/B\Y?
To calculate relaxation times, one considers equilibrium =12 <\ ——— (22)

correlation function of normal co-ordinates
. 2.1.5. Localization of macromolecule
(07 (Pt = 5))0 = My (s5)dik A more detailed analysis sho§] that, atE/B >> 1, the

The angle brackets denote the averaging over the ensembld"€a" displacement of every Brownian particle in a chain

of the realisation of the random forces in a dynamic equa- 3
tion. Ay =Y ([0 = @], «=0.1,... N.
In the simplest case — macromolecule in a viscous liquid i=1
— one can use the Rouse modes (9) to determine the equiis restricted: the particle does not go further that a certain
librium correlation function as distance for a time/B. The fulfillment of the relation

E 2

1 t
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ensures the existence of universal (independent on thethat unbounded lateral motion of particles is completely
length of a macromolecules) intermediate lengtldefined suppressed due to the presence of many neighbouring
by Eqg. (17) The parametel introduced in the previous macromolecules. By this way, one comes to a very elegant
Subsection is, in fact, the ratio of the squared diameter linear model of reptating macromolecules proposed by Doi
of the intermediate length to the mean squared end-to-endand Edwardg3]. The diameter of ‘tube’, within which the
distance of the macromolecule macromolecule moves as a particle in a viscous liquid, is
v n 2 (2¢)2 (25)2 . _postu_lated in D_oi—Ed‘vvards m,o_c[éi,4]_. But, it is natural tq
2B~ 8 (kY Ry (24) identify the radius of ‘the tube’ in Doi-Edwards model with
the emerged in previous model intermediate lergthVe
For observation times <« 1, the small-scale motion of  use a special symbol for the radius of the téhdecause
the particles confined to the scdlean take place, and the the original diameter of the tube, postulated by Doi and
large scale chain conformation is frozen. Up to intermedi- Edwards[4], is slightly different from the quantity&
ate lengtht the macromolecule diffuses as a particle in vis-  As before, we shall consider a chain consistingvof- 1
cous fluid. The displacement of every particle of the chain is Brownian particles to be a proper schematisation of a macro-
restricted; the macromolecule remains near its original po- molecule but, following Doi and Edward8], we assume
sition for some time — localization effect. It looks like un- that the distance between adjacent particles along the chain
bounded lateral motion of a macromolecule is suppressedis constant and equal # so that the arbitrary number of
due to the entanglement of the probe macromolecule with its particles satisfies the condition
many neighbouring coils which, as can be believed, effec- NE? = (R?) (25)
tively constitutes a “tube”. One can regarél & the diame- o ’
ter of a tube within which the macromolecule moves freely.  The states of the macromolecule can be considered in
However, in fact, one needs no temporary knots, no entan-points of time in a time intervalr, so that the stochastic

glements, no tube to explain dynamics of polymer systems. motion of Brownian particles of the chain can be described
The immediate consequence of the modified Cerf-Rouse dy-py the equation for the particle co-ordinates

namics of a macromolecule is emerging of a certain inter-
mediate lengtly which is connected with the relaxation time .0, 4 Ay) = +¢(f) Py 4 120 1-— ¢(t) 100100 1 o),
of interacting segments.

One can note that the existence of the intermediate length

X:

in entangled polymers can be considered as a reliable fact (4 A = 1+ 160 i1y 1700 1- ¢(t) 1.
due to neutron spectroscopy experimgafg. )
v=1,2,... SN —1,
2.2. Reptation modes
1+¢@ 1-9(0) N1
The motion of the Brownian particles of the chain, de- N+ A= > [P ) + o] + Y )

scribed by lineaEq. (4) is essentially restricted by forces of (26)

external and internal resistance which make difficult for the _ . .

macromolecule to change large-scale conformation. How- whereg(z) is a random quantity, which takes the values

ever, these forces do not appear at motion of particles of theor —1, andv(z) is a vector of constant lengthand random
chain along its contour. Coherent motion of the particles of direction, so that

the chain along its contour is consistent with topological in- _ _

tegrity of macromolecules, the macromolecule moves like a (PpNPw)) = b, (P() =
snake — this is the reptation motion. W(Ov@w)) = s  (v()) = 0. (27)

2.2.1. Doi-Edwards model The set ofEq. (26) describes the stochastic reptation
To model the reptation motion of the macromolecule, it motion of a chain. The “head” and the “tail” particles of
is necessary to introduce the anisotropy of the mobility for the chain can choose random directions. Any other particle
every particle (bead) in the considered coarse-grained modeffollows the neighbouring particles in front or behind. The

of a macromolecule. The scalar quantRyin formula (12) smaller the time intervalAr the quicker moves the chain.
ought to be substituted by a tensor quantity for each particle Clearly, the time interval can not be an arbitrary quantity
of the chain to make mobility of a particle along the axis of and is specified by Doi and Edwards as

a macromolecule bigger than mobility in the perpendicular (N

direction, so that the entire macromolecule can move more A7 = 2§ (28)
easily along its contour. The introduction of anisotropy of

the particle mobility makes the dynamic equation non-linear, 2.2.2. Mobility of macromolecule

which introduces difficulties for analysis. However, in this Reptation of macromolecules was specially invented to
case one can exaggerate anisotropy of mobility, assumingdescribe long-time dependence of the diffusion coefficient
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of macromolecules on their length. Indeed, one can di- The combination of the relations for diffusion defines a point
rectly obtain the well knowr4] results fromEgs. (26) of changing of mechanisms of mobility by relatigtB =
and (27) 72/2, so that one can write

2

(29) Bl~M19 2yB<7? no reptation-

2 §
<A‘I>=6D0 D= Dg x

—t
2 b

(R) 272 ~ M2, 2xB > 72, reptation

where Dy is the coefficient of the diffusion of the macro- (32)

molecular coil in 'monomer’ viscous liquiddg ~ M1, . o -

E is an intermediate |ength arKda2> is the mean Squared WhereDo is the coefficient of the diffusion of the macro-

end-to-end distance of the macromolecule. molecule in aviscous monomeric liquid. The transition point
between weakly and strongly entangled systems will be es-
2 2.3. Relaxation times timated inSection 3.3where experimental evidence on the

It is not difficult to obtain an expression for the correlation transition point also will be discussed.
function M, () and estimate times of relaxation due to the
reptation mechanism. According to Doi and Edwardg,[  3.2. Conformational relaxation
p. 196], equilibrium correlation function is written as
The mean size and shape of the macromolecular coil in

M, (1) = exp(— ’rep>’ (30) a deformed system are described by the non-equilibrium
2UAg 21y correlation functions
1
Tpr_ gésti _ 3(R2> i _ :_.3_2_* <P?(t),0g(t)>, (pft(t)p]g(t)k) = maikv
o -_ - — 9
212 T o? £ o2 2 xoa? .
w=12 .. <N (31) where the angle brackets denote averaging over the ensem-

ble of realisation, while the subscript zero denotes the equi-

The time behaviour of the equilibrium correlation function librium situation. As an internal variable, it is convenient to
is described by a formula which is identical to formula for a USe the dimensionless quantity
qhain in viscous liquidEq. (19) while the Ro_use relaxation X = 2 (%), ()0 = 16
times are replaced by the reptation relaxation times. ij = 3HrelOi Pl ij70 = 30

In the overdamped regim@: = 0), the mean sizes of the
macromolecule relax to equilibrium values according to the

3. Weakly and strongly entangled systems law
d 1 1
One of the two models, considered in the previous Sec- Exﬁ‘( = <xf‘k - §3ij> (33)

tion, successfully imitates the basic isotropic stochastic mo-

tion of the particles of the chain among the neighbour- One has to take into account that the relaxation times-

ing chains, while the other is needed to describe specialcludes contributions from the diffusive and reptation mech-
motion of the macromolecule — the original non-amended anism of relaxation

reptation-tube moddB]. One can expect that reptation mo- 1 1 1
tion could emerge as non-linear effect from the ‘correct’ — _— = + —p-
model. Instead of a single non-linear unknown equation, we T« Ta T

have to use two sets of linear equations stitching up the re- The two mechanisms of relaxation compete and one
sults. We consider these two models as complementary mOdhas to compare the different conformational relaxation

_els an_d combine the results, unless a unified ‘correct’ model branches of the macromolecule coil which are defined by

is available. relations (22) and (31). Considering that for the strongly
entangled system& > B and for the weakly entangled

3.1. Diffusion of macromolecule systemsE < B, one can compare the above relations for
relaxation times at£ = B to conclude that the reptation
For long times of observatian> , there are two compet-  mechanism predominates ag® > 72/3, so that the con-

itive mechanisms of mobility of macromolecule: due to mo- formational relaxation times for entangled system can be
tion through the sea of segments (constraint-release mechagyitten as

nism) and due to reptation. The diffusion coefficient can be

defined due tdgs. (19) and (29s Bt} ~ MSMZ, (4/3)xB<m?, noreptation
Ty =
1 £ ¢ 7%/ 0T ~ MIM3,  (4/3)xB > 72, reptation
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Itis convenient to distinguish the probe macromolecule (with demonstrate the existence of the two critical points. The
molecular weight or lengti¥) and the neighbouring macro-  first critical point, M; ~ 2M,, determines the transition
molecules (with the lengthfp), even if all of them are equal.  between non-entangled and entangled systems. The position
Note that the top line ifEq. (34) até = 3 restores the result  of the second transition point can be estimated from the
of the constraint-release theofy], while the bottom line data for diffusion of polybutadiene molecul@], p. 1333]

presents the results of reptation dynamics. as M* ~ 10M,, while the slope of the dependence in the
region betweenV; and M* can be approximated as 3.4
3.3. Transition point between weakly and strongly which gives, according t&q. (32) an estimaté = 2.4.

entangled systems

The conditions determining a point of transition to emerg- 4. Viscoelasticity of strongly entangled systems
ing of reptation motion of macromolecules are slightly
different for diffusion (relations 32) and for relaxation It is well known [4] that, when viscoelastic behaviour
(relations 34). It is possible to believe, taking some arbi- of the entangled system is considered on the base of the
trariness in the definition of the relaxation transition point reptation dynamics, one obtains the following relations for
into account, that these conditions coincides, so that onecoefficient of viscosity and terminal relaxation time
has a single dynamic transition point between weakly and
strongly entangled systems, determined by equation n~ M>, T~ M.

xB = in? The small deviation of the derived value of the exponent
3 from the empirical value 3.4 gave rise to hopes that some
To find out a dynamic transition point', which separates  improvements of the reptation dynamics could bring the cor-
the strongly entangledy(< x*) and weakly entangled((> rect result. However, to appreciate this result properly, one
x*) systems, one can consider the quanitp be afunction  has to distinguish the probe macromolecule (with molecular
of x which, in virtue of relations (14), (24) and (47), can be weight or lengthM) and the neighbouring macromolecules
written as power function (with the lengthMg), even if all of them are equal. The de-
B=@2x" <05 (35) rived coefficient of viscosity and_termina_ll relaxation time do
not depend on the length of neighbouring macromolecules,
It is not difficult then to find a solution of th&q. (35) so that the result of the Doi-Edwards approgthcan be
taking into account the empirical value~ 2.4, and to  Written for terminal relaxation time as
estimate the position of the transition point r ~ Mg 3 (37)
x*~01 or M*~10M,. (36)
The effect of lengths of the probe and neighbouring
It is remarkable that there is a region betwedg and macromolecules can be separated experimentally by inves-
M* in which the entangled system can be considered dif- tigating dilute blends of polymers (s&ection §. The data,
ferently from the region of macromolecular lengths above reported by Watanabg2], p. 1353] show that, in contrast
M*. The empirical results (2) and (3) confirm the position to Eq. (37) terminal relaxation time depends on the molec-
of the transition point next to e, which can be inter-  ular weight of neighbouring macromolecules, whereas
preted as the transition point between weakly and strongly the exponent in the dependence on the length of a probe
entangled systems, and determine the difference in relax-macromolecules is less than 3. One can say that result (37)
ation behaviour for the two types of entangled systems. The qualitatively contradicts to empirical data, this is a major
comparison between empirical and theoretical results showsproblem encountered the Doi—-Edwards theory based on the
that, while the molecular-weight dependencies of relaxation reptation dynamics, and modification of reptation dynamics
times for weakly entangled systems (the top lineBgs. (2) (contour length fluctuation model, for example) could not
and (34), at§ = 2.4 coincide, there is disagreement be- recover the empirical relation. One has to pay attention to
tween the results (the bottom lineskuys. (2) and (39)for alternative mechanism of relaxation via constraint release
the strongly entangled systems. However, one can note thatand its possible generalisations.
Eqg. (2)determine the terminal relaxation time of viscoelas-  In this situation, we chose to apply to the modified
ticity, whereaskq. (34) determines conformational relax- Cerf-Rouse modes to calculate the characteristics of vis-
ation time of macromolecules, and the comparison shows coelasticity. One can note that chains with intramolecular
that these relaxation times are not identical. In fact, as oneresistance (which assumably are chains in an entangled
can see in the next Section, they are different for strongly system as described Bection 2.] have two branches of
entangled system. relaxation times: conformational (reptation for the case of
Data on diffusion of linear polymers also demonstrate the strongly entangled systems) and orientational (or trans-
existence of the region of weakly entangled systems. Dataverse). Using the dynamics (4) to calculate stresses in the
of different scholars, collected by Watanafg, directly system of strongly entangled macromolecules, one takes
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into consideration both conformational and orientational this dependence is ignored here. Conformational relaxation
branches of relaxation. Viscoelastic behaviour of the systemtimes are considered to be reptation relaxation time&dn

is determined by interplay of the two relaxation branches (39)and later, notation for the symmetric and antisymmetric
(at low frequencies; one has to take into account the othervelocity gradient tensors are used

relaxation branches to consider the higher frequencies). 1 1
i =z + i),  wil = 50 — vi).

4.1. Constitutive refations 4.2. Linear effects of viscoelasticity
4.1.1. Stress tensor

Method of Rice and Graj18] was used to calculate the
stress tensor of the system as a stress tensor of the suspensi
of Brownian particle$6]. The result for the system governed
by dynamics (4) can be conveniently written, using two sets

The set ofEqgs. (38)—(40kllows us to calculate stresses
gxﬁ any given velocity gradients. To characterize linear vis-
coelasticity and calculate dynamic modulus, we consider os-
cillatory motion with gradient of velocity

of macroscopic internal variables, in the compact form Vi ~ et
Ok = — ik + 3n-|-z <xivk — o+ uﬁ() ) (38) Keeplng only the f|rst-ord§r terms with respect to velqcny
" 3 gradient, the set of relaxatidaqg. (39)for the internal vari-

_ _ _ables can be written in the simpler form
wheren is the number density of macromolecules. The first

set of variables{ — conformational variables — characterises % _ 1 o }31( n Eyk

the mean size and shape of the macromolecular coils in a de- dr e ik 3T 3"
formed system, while the second set of variahf¢s- orien- duft 1, 1/, 1 2 &
tational variables (the name is justified earligg][ p. 126]) dr - hik T o\ Kk T §5ik - §Bfa Vik

— is associated with stresses induced by internal resistance o _ )
forces of macromolecules. Pressgrincludes both the par- ~ Where the set of relaxation times is definedHxy. (40)

tial pressure of the gas of Brownian particle&V + 1)T These_ equations. have the following solutions for oscilla-
and the partial pressure of the carrier “monomer” liquid. tory motion

We shall assume that the viscosity of the ‘monomer’ liquid 1 2 P

can be neglected. According to the mesoscopic approach,xj, = §3ik + 37, Teplik

the stress tensor of a system is determined as a sum of the 1- “"T,%p

contributions of all the macromolecules, which in this case ug = = BTS — f‘f rep 1. Yik-

can be expressed by simple multiplication by the number of 3 1-iwty" | 1-iwt

macromolecules. Then, one can make use of the expression (38) for the

. . stress tensor to obtain the coefficient of dynamic viscosity
4.1.2. Relaxation equations

The macroscopic internal variableg and uj can be X P
found as solutions of relaxation equations which are differ- G(w) = nTZ [ - “rep
ent for weakly and strongly entangled system. After simple e 10T
operations over dynamiEq. (8) one can obtairi6] a set IeP —iw
of relaxation equations for the internal variables, which, for + <Br5 -— rep) T :| (41)
strongly entangled systems, can be written in the form 1—iwry i

dx% . ) 1 , 1 T_he first te_rms_ under the sum in this re!ation pr_esents the
o Vi T YN = T ep (xij - §5ij> : (39) direct contribution of the reptation relaxation. Having evalu-

@ ated, these terms give us the results of Doi—Edwards theory.

The terms of the first and the second orders in expansion

ducf @ o of expression (41) in powers efiw give, correspondingly,
— WijlUj — Wkjlji ’ '

dr the coefficients of viscosity and elasticity
1, 1 ( s 1 R B
= ——uj — — | x} — =6k — 2Bt x{{ vk | + =viuf.. /X 2
ok Tk 3 @« ETK n=nTY BR = %nTr*B ~ MM (42)
where the set of relaxation times is defined as a=1
rep T° R R T T
T T =—T,, T,=—, a=12..<K-. (40) /X
x ¢ “ a2 X V= nTZ(BrrE A
Some approximations were introducedlngs. (39) The a=1

times of relaxation for orientational variable§, strictly

2 4 2
_ jT_ VA 7[_ *y 2 ~ 7T_ *\2
speaking, slightly depend on the number of the mode, but ~ nT( 3 (BT X — 7B > 3 NTBT)" % (43)
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The terminal viscoelastic relaxation time 4.3. The second order effects

V
= - =2Bt" x ~ M{M. 44 o _
t n v 0 (44) Though we do not need practically in the conformational
branch to describe linear viscoelasticity, it appears to be

appears to be equal to the relaxation time which was in- . . . ; Pem T
bp q impossible to describe correctly experimental situation in the

troduced to characterise the medium surrounding the probe ; : - . .
non-linear region avoiding conformational, exactly reptation
macromolecule. Thus, for the strongly entangled systems,

. ! : ' relaxation. We shall illustrate this on the example of shear
the theory is self-consistent and this confirms the statement . )
; . ; : when one of the components of the velocity gradient tensor
of Section 2.1.2that chains of Brownian particles can be

. . . S . has been specified and is constant, namely~ 0. In order
considered as moving independently in a liquid made of in- : L .

. to achieve such a flow, it is necessary that the stresses applied
teracting Kuhn segments.

One can see that, in contrast to relation (37), terminal T S e C ot ot b e e e
time of relaxation (44) depends on the length of both a quid, '

. . so that the stress tensor is
probe macromolecul® and neighbouring macromolecules
Mp, which is consistent with experimental data (see the | o011 o012 O
next section). The estimate of exponénaccording to the
constraint-release theory, is 3, while the empirical valae
2.4 can be found at the comparison expressions (42) and
(44) with empirical relations (1) and (2) for strongly en- The shear stress;» and the differences between the nor-
tangled systems. However, the assumption that there is hy-mal stresses1; — 022 andoos — 033 are usually measured
drodynamic interaction between Brownian particles of the in the experiment. The results of calculation of the stresses
probe macromolecule changes the dependencies (42) andip to the second-order terms with respect to the velocity
(44) in such a way, that empirical value of expon&ntould gradient will be demonstrated further on.
be more that 2.4 and closer to 3 in accordance with the For calculation of shear viscosity and normal stresses, we
constraint-release estimates. The presence or absence of hytseEq. (38)for the stress tensor and relaxatigqg. (39) To
drodynamic interaction can be discovered experimentally by the first approximation with respect to the velocity gradient
measuring the characteristic quantities for dilute blends of v,,, one determines the only component of the stress tensor

o1 o022 O
0 0 033

linear polymers (se&ection 5.2 — the shear stress
Value of the dynamic modulus on the plateau can be found 2 X
asGe = lim,,_, .G () which gives O1p = N0V12, no = gNTBr™, x < 0.5 (48)
/% B.R 24 The terms of the second order allow us to determine nor-
Ge = nTZ 1+ To )~ nT T + = (45) mal stresses and calculate the measurable quantities — dif-
T x 12y
a1 ferences of the normal stresses
The contribution from the first term (reptation branch) has o11 — 022 = 2L;nTX (Bt*v12)?, (49)
the same order of magnitude as the contribution from the
second term at very high frequencies. However, the differ- s — omn = T 7T_6i n } 2 71_2 (Br*vip)?
ence in the distribution of relaxation times determines that %2~ 733~ 90 xB 3% 3* 12

the plateau from the reptation branch is reached at much - _
higher frequencies than from the orientational branch, so The two quantities are used to characterise the system:
that, for the strongly entangled systems, one can approxi- the steady-state modulus and the ratio of the normal stresses

mate dynamic modulus on the plateau as differences, correspondingly,
2 202 2
bid _ 12 -1 0
Ge= —nTx t~ MC. 46 —=—=_—_nTy " ~M 50
e= 5N (46) o11—o22 12 X 0

This relation allows one to introduce the interpretation of ., _ ;.. ot 1 . 1 1 (51)
the parametey as o11— 022 _ 60 2B anx 5

7> Me Mg .
= —— A —. (47) The steady-state modulus (50) does not contain the un-

12mM M known functionB(M) and, in accordance with experimental

In the case of strongly entangled systems, conformational data[1,19] for strongly entangled systemV( > 10Mg),
relaxation is realized through reptation mechanism, though does not depend on the molecular weight of the polymer,
the main contribution into linear viscoelasticity of the sys- while the expression for the modulus is exactly the same
tem came from relaxation of orientational variables. To as for the plateau value of the dynamic modulEg.((46).
describe linear viscoelasticity at low frequencies, one can Note that, if one neglect the reptation relaxation branch or
neglect conformational relaxation, whatever the mechanismchose another dependence for the rate of reptation relax-
is realized, at all. ation instead of the law™P ~ M3, one would obtain quite
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different dependence of the steady-state modulus (50) onpmmZ2-1 1

molecular weight. This confirms that reptation motion is — 5 = 5-1,2 (55)
needed for description of non-linear viscoelasticity, while 0

the law of the reptation relaxatiori®® ~ M2 is not needed One can see that, & = 3, the left-hand side of the

in any amendments. relation coincides with the Struglinski-Graessley parameter

[21] which, as one can easily calculate, has critical value
0.024 fors = 3 and 0.04 fos = 2.4. Relation (55), abf =

5. Viscoelasticity of dilute blends Mo, is an identity for critical valueds* ~ 10 at§ = 2.4 or
M* ~ 7.3 ats = 3.

By studying a mixture of two polymers, one of which is For the matrix of short macromolecules, whdlg < M*,
present in much smaller amosnt a dilute blend, one has the transition point for a probe macromolecule of the addi-
a unique opportunity to obtain direct information about the tive is also situated in the short-length region, so that the
dynamics of a single macromolecule among the neighbour- macromolecules of the additive, which are longer thén
ing macromoleculef0]. The change in the stress produced or M*, do not reptate. However, if the matrix is made of
by the small amount of macromolecules of another length is, macromolecules, for whicMy > M*, there is a region be-
clearly, determined by the dynamics of the non-interacting tweenM* and
impurity macromolecules among the macromolecules of an- MS

other length, so that this case is of particular interest from M™* = 1,251 (56)

the standpoint of the theory of the viscoelasticity of linear T Me

polymers. in which a probe macromolecule of the additive reptates.
However, the macromolecules of additive longer th&t*

5.1. Relaxation of probe macromolecule do not reptate in the matrix of shorter macromolecules

with Mg > M*, so that one has to discuss two cases:
Consider a system consisting of linear polymer with non-reptating and reptating macromolecules.

molecular weightMp and a small impurity of a similar
polymer with a different molecular weigh. We shall ~ 5.2. Characteristic quantities
assume that the amount of the high-molecular-weight ad-
ditive is so small that its molecules do not interact with ~ The system containso matrix macromolecules and
each other. The matrix is characterized by the characteristicimpurity macromolecules per unit volume and can be char-
length M, — the length of macromolecule between adjacent acterised by dynamic modulus(w). The increase in dy-
entanglements. It is convenient to use the characteristichamic modulus, taking into account the fact that some of the
parameters for the macromolecules of the matrix and the macromolecules of the matrix have been replaced by impu-

additive, which, respectively, are rity macromolecules, can be written as
Me Me M
~ e ~ e 52) G - Go(w) =n ( (@) — — o(w)> 57
N S OV (52) ST Mo® &7

Apart of relaxation due to constraint-release mechanism, whereg(w) andgo(w) are the contributions to the dynamic
the probe macromolecule relaxes due to reptation. The twomodulus from a single macromolecule of the impurity and
relaxation mechanisms compete and to uncover which mech-the matrix, respectively. Further on, we consider low fre-
anism of relaxation of a probe macromolecules of the ad- quencies for which
ditive is realised, one has to compare the relaxation times
from (34) to obtain the condition for realisation of reptation
relaxation We shall assume that the macromolecules of the matrix
2y B(xo) > 72 (53) are long enough, S0 that, acc_:ording to Hus. (42_) _and (43)

one has for coefficients of viscosity and elasticity

In the case whe = My, this relation define the crit- 2
ical length M* which divides weakly (macromolecules do g = ”_nOTfE;B,
not reptate) and strongly (macromolecules reptate) entan- 6

G(w) ~ —iwn — va)z, Go(w) =~ —iwng — voa)z.

gled systems. Similar to the procedureSection 3.3 one i .2 .

can find that the characteristic parameters in the point, where %”OT(TOB) ’ Mo < M7,

the mechanism of relaxation of macromolecules of the ad- Y0 = 2 (58)
ditive changes, are connected by relation EHOT(TSB)ZXOv Mo > M*,

x =210y} (54)

whereng ~ M~1 is the number of the matrix macro-
This relation can be rewritten in terms of the lengths of molecules per unit volume ang ~ Mg is the characteristic
macromolecules as Rouse relaxation time of the macromolecules of the matrix.
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The contribution of: macromolecules of the additive into
the coefficients of viscosity and elasticity of the blend are
defined as

4
T WT(t*B)?,

M M**,
90 -

2
n= n—nTr*B, V=
gnT(t*B) X, M < M**,
(59)

wheret* ~ M2 is the characteristic Rouse relaxation time
of the macromolecules of the additive. Note that, while the
relaxation timer* is a function ofM, the quantityB has to
be considered as a function dfp.

We investigate the case of very dilute blends and introduce
the characteristic quantities

b — 10
cno

Vp —
cvo

Vo

)

[n] =lim.—o [v] =limco (60)
which are apparently functions of the length (or molecular
weight) of the macromolecules of the matrix and the impu-
rity. The index O refers to the matrix andis the impurity
concentration.

To calculate the quantities, — no and vy, — vg, We use

Egs. (58) and (59)Taking all the above into account, one
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Results (62) and (63) do not depend upon any choice of
the dependence aB on the length (molecular weight) of
macromolecules.

The resultg22] of empirical investigation of viscoelas-
tic behaviour of dilute blends of polymers allow us to esti-
mate[20] characteristic quantities for polybutadiene by the
dependencies

[77] ~ M60.8MO.5’ Mof(llsﬁzlz)MlS—)SAO.

[v] ~
The comparison of the theoretical formulas (62) with the
experimental ones (64) shows the consistency of the results,
though the absolute values of indexes in formula for char-
acteristic viscosity has appeared to be less that theoretical
value 1. Unfortunately, the accuracy of original empirical
data (in fact, the required linear dependence of quantities on
concentration had never been reached in the \i22R does

not allow one to say whether there are any certain deviations
from relations (62) or not. If relations (64) are confirmed, it
could mean that there are some unaccounted issues (intra-
chain hydrodynamic interaction, for example) which would
decrease in values of the index. Apparently, one needs in ex-
tra experimental data for different polymer systems in both
weakly and strongly entangled states to analyse the situation
in more details.

(64)

can calculate expressions for the increase of viscosity and

elasticity, assuming tha# > M*, and find expressions for
the characteristic quantities in the form

2 ( MO

Np — No = %HT‘E*B 1-—

)

(61)

4 3
b M
—nT*B)?(1- -2,
90 (=" B) ( M3
Moy < M*,
2 2
T Me M
—nT*B?—[1- 2],
vpw—vp=1 3 ("B) M( M2
Mo > M*, M < M**,
4 2
T 30 MM,
“nT*B)?(1- =0,
90 72 M3
Mo > M*, M > M**.

Using the above relations atf). (60) one finds that for
M > Mo
My3MB3, Mo < M*,
My2M?, Mo > M* M < M**
My2MB3, Mo > M* M > M**.
(62)

] ~ My*M, [v] ~

On the other hand, wheM <« My (this condition ex-
cludes the cas#1y < M*) the characteristic quantities are
negative and are independent of the length of the matrix and
of the impurity macromolecules

[n] ~ MIMP,  [v] ~ MOM®, Mo > M* (63)

5.3. Terminal relaxation time

It was assumed that the quantiByis a function of My,
but, luckily, one does not need in expression for explicit
dependence to obtain the final results (62) and (63) for
characteristic quantities for dilute blends of linear poly-
mers. However, the dependence of the quansitpn Mg
or, in other terms, the value of exponéntan be recovered
due to empirical data. To estimate this dependence, one can
consider the terminal relaxation time

Vp — Vo
- b — 10
and useEq. (61)to obtain forM > M*
B(Mo)M?, Mo < M*,
v~ { BIMo)M, Mo > M*, M < M** (65)

B(Mo)M?, Mg > M*, M > M**.

The first line is valid for the case when matrix is a weakly
entangled matrix, the second and the thirddirea strongly
entangled matrix.

Watanabe[@], p. 1354) has deducted that, according to
experimental data for polystyrene/polystyrene blends, when
the matrix is a weakly entangled system, terminal time of
relaxation depends on the lengths of macromolecules as

T~ M3M?, (66)
while also for polystyrene/polystyrene blend23] found
different values of indexes (2.3 instead of 3 and 1.9 instead
of 2); the difference is discussed by Watangl3g, (p. 1356).
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No empirical relation, similar to relation (66), is available The interplay of the two branches determines viscoelastic
for strongly entangled systems, but, as it can be seen in plotsbehaviour of the system. The conformational (reptation)
of the papen2], that the value of the first index are less relaxation appears to be very important for description the
that 3 in this case. It is possible that situation is different for effects of viscoelasticity of the second and higher orders.
weakly and strongly entangled systems, so that values of the The discussed mechanisms of relaxation processes allow
index in formula (66) could be different for these two types us to formulate constitutive equations for linear polymers
of systems. which, due to the difference of mechanisms of relaxation, ap-

Comparing formulae (65) and (66) allows one to estimate pear to be different for the two types of systems. The consti-
the dependence of coefficient of enhancement on the lengthgutive relations derived in our previous papgg][ Egs. (48),
of macromolecules as (50)—(52], in which effects of reptation were not considered

3 at all, can be used to describe viscoelastic flows of weakly

B~ My, 67) entangled system. The case of strongly entangled systems
thatiss = 3, in contrast with previous estimate of the index, IS considered in this paper and appears to be the simplest
due toEq. (42)for viscosity, as 2.4. The last value of the ©ne. The constitutive relations (38)—(40) contains, apart of
index, as discussed in the end of the previous Subsection 1€ conventional characteristic Rouse relaxation timehe
is followed the suggestion that hydrodynamic interaction three mesoscopic parameters introduced in the macromolec-
inside macromolecular coils is ignored. One cannot exclude Ular dynamicEq. (4} z, B and E. Due to requirement of
that empirical value of the index, due Ex. (42), could be correspondence of the derlyed results to empirical situations,
closer to 3, but, in this case, value of the second index in the parazmeters can be defined as
Eq. (65)must be less. T

There is some contradiction of empirical result (66) with E= B?’ x <01
the reliable results for monodispersdd = M) system. In- s
deed, taking result (67) into account, the terminal relaxation B = (20" x <0.5 (69)

time (44) can be written as wheres is an index independent on the length of the macro-

M5 M < M* molecules (typical valué ~ 2.4). So, it has appeared that
' (68) the dynamics of the system of very long macromolecules
(M > 10M,) is controlled by the only dynamic parameter
To provide the correspondence to the empirical dependen-X Which has the direct physical meaning as the ratio of the
cies of viscosity and terminal relaxation time on the molec- squa}re of the double intermediate Iength (the diameter of ‘the
ular length (relation 1 and 2), the sum of the two indexes in P€") t0 the mean square end-to-end distance of the macro-

Eq. (66)must have value 4.4 in the case, when the matrix is molecule(R?) or the inverse number of ‘entanglements’ for
a weakly entangled system, and value 3.4, when the matrix{N€ macromolecul@//Me
is a strongly entangled system with macromolecular length - { (26)2/(R?),

T~ 4
M M> M*

M betweenM* andM**. One can think that the further em- X = 57— ~ Mo/ M (70)
pirical investigation of viscoelasticity of dilute blends could
shed more light on the dynamics of macromolecules in en-  The description of the phenomena might appear to remain
tangles systems. qualitative, so as there are apparently many points, where
the description of the modes can be improved. The meso-
scopic effective-field approach itself is needed in proper mi-
6. Conclusion croscopic justification. Apart of empirical justification, the
considered scheme can be justified or rejected, if the prob-
The combined consideration of the two models of lem of direct derivation a single-chain equation for a system
macromolecular dynamics allows us, first of all, to distin- of interacting macromolecules is solved. The approaches to
guish weakly entangled (length of macromoleculds< the problem[11-14] demonstrate the possibility of reduc-
10M,) and strongly entangled (length of macromolecules ing many-chain problem to a single-chain problem and of
M > 10M,) systems. While one needs only in modified evaluating the memaory function in the single-chain equation
Cerf-Rouse modes to explain effects of viscoelasticity in through the intermolecular correlation functions and struc-
weakly entangled systems, the combination of two models tural dynamic factor of the system of interacting Brownian
of macromolecular dynamics (unless one has a general-particles. Unfortunately, more detailed comparison has ap-
ized model) ought to be used for consistent explanation of peared to stumble, first of all, over the unjustified simplifica-
linear and non-linear effects of viscoelasticity in strongly tion of the starting pointin the cited works. As an initial point
entangled linear polymers. To consider viscoelasticity of was chosen not a microscopic picture of interacting atoms
strongly entangled system, one has to take into account thator, at least, rigid Kuhn segments of the macromolecules,
two branches of relaxation times of macromolecules (de- but picture of the interacting particles of the coarse-grained
formational, reptation in this case, and orientational) exist. chains. The preliminary switch to coarse-grained chains does
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