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Abstract

The paper proposes an explanation of the second critical point in viscoelastic behaviour of linear polymers, position of which, according to
Ferry (1980), is empirically estimated asM∗ ≈ (4.6−12)Me, whereMe is the length of the macromolecule between adjacent entanglements’.
The paper begins with an introduction to the dynamics of a single macromolecule in the entangled system. Diffusive and reptation mechanisms of
relaxation of macromolecules are considered and compared, which allows one to introduce the division between weakly and strongly entangled
systems and to calculate the dynamic transition point asM∗ ≈ 10Me. Three types of linear polymer systems ought to be considered, according
to the ratio of the length of the macromoleculeM toMe: M < 2Me – non-entangled system, 2Me < M < 10Me – weakly entangled systems
andM > 10Me – strongly entangled systems. Reptation motion of macromolecules can be noticeable only in the strongly entangled systems.
It is shown for these systems that contribution of reptation relaxation in low-frequency linear viscoelasticy can be neglected, while one has to
take reptation relaxation into account to obtain the correct dependence of effects of the second order on the length of the macromolecule.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Linear viscoelasticity is conveniently characterised by the
dynamic modulusG(ω) which depends on frequencyω. To
analyse the results, one also considers asymptotic behaviour
of the dynamic modulus at high and low frequencies. In the
latter case

G(ω) = −iωη + ω2ν.

The expansion determines the terminal quantity: the vis-
cosity coefficientη and the elasticity coefficientν which,
in their turn, determine the terminal relaxation time and
steady-state compliance, correspondingly,

τ = ν

η
, Je = ν

η2
.

The dependencies of the terminal characteristics on the
length of macromoleculesM appeared to be decisive for
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the classification of linear polymer solutions and melts
[1,2]. The law for coefficient of viscosity, which was con-
firmed for all polymer system which were investigated,
determines the first critical pointMc separating entangled
and non-entangled systems of linear polymers

η ∼
{
M, M < Mc, non− entangled systems,

M3.4, M > Mc, entangled systems.
(1)

While the above formula is valid in the whole region above
Mc ≈ 2Me, whereMe is the length of the macromolecule
between adjacent entanglements’, the dependence of termi-
nal relaxation time is different (Ferry, 1980) for weakly and
strongly entangled systems and determines the second crit-
ical pointM∗

τ ∼
{
M4.4, M < M∗, weakly entangled systems,

M3.4, M > M∗, strongly entangled systems.
(2)

The data for melts of different polymers collected by Ferry
[[1], p. 379, Table 13-III], while acceptingMc ≈ 2Me, al-
lows us to estimate the second critical point as
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M∗ ≈ (4.6 − 12.0)Me. (3)

One can think that there are more recent numbers, but
we believe that the above data are typical. It is remarkable
that linear and non-linear viscoelastic behaviour of linear
polymers with molecular weight less than a certain criti-
cal value is different from that of the system with longer
macromolecules. The very existence of the transition point
between weakly and strongly entangled systems can be con-
sidered as empirical fact which has to be explained.

The concept of reptation relaxation of a macromolecule
was used to explain the effects of viscoelasticity in entangled
polymers[3,4]. However, one can see that this theory was de-
signed to describe a case, whenτ/η ∼ M0, η ∼ M3.4, that is
the case of strongly entangled systems. Simultaneously, one
can note that an alternative approach[5], which is based on
suggestion that isotropic stochastic motion of the segments
of the macromolecules is possible in an entangled system,
can be applicable for weakly entangled systems. Indeed, it
givesτ/η ∼ M, in accordance with the aboveEqs. (1) and
(2) for weakly entangled systems. Note that the alternative
approach[5], at slow motion, is formally equivalent to the
constraint-release theory[7] and can be considered as a for-
mal time-dependent generalisation of the latter. Thus, one
can suppose that two mechanisms of relaxation: reptation
and diffusive (constraint-release) are possible in entangled
systems, the transition point between weakly and strongly
entangled systems is determined by the competition of these
mechanisms. To calculate a position of the transition point,
we compare the above mechanisms and refer to two models,
while one of them imitates the basic isotropic stochastic mo-
tion of a particle among the neighbouring chains[5,6] and
the other is needed to describe special motion of the macro-
molecule – the original non-amended Doi–Edwards model
[3]. It is important that the considered models are consis-
tent: the localisation of the macromolecule in a tube, pos-
tulated by the second model is justified by the first model
[6]. The radius of the tube is calculated as a dynamic in-
termediate length through phenomenological parameters of
the first model. Two models appear to be complementary
models and one can combine the results.

The objective of the paper is to discuss a possible mech-
anism of transition between weakly and strongly entangled
linear polymers. For consistency of the paper, the funda-
mentals of dynamics of a macromolecule in the system of
macromolecules are discussed and the linear normal modes
of the system are described inSection 2: the omitted de-
tails can be found in the monographs[4,6]. The purpose of
this Section is to describe the foundations and main features
of the mesoscopic approach. InSection 3, diffusion and re-
laxation processes in entangled systems are discussed. The
division between weakly and strongly entangled systems is
introduced here, and the dynamic transition point is calcu-
lated asM∗ ≈ 10Me. Relaxation behaviour of the different
systems is different: only in the strongly entangled systems
effects of reptation relaxation of macromolecules can be no-

ticeable and these are the system to which the results of the-
ory [8] are applied. InSection 4viscoelasticity of strongly
entangled systems will be considered and will be shown that,
though the reptation motion is present, contribution of the
reptation branch into low-frequency linear viscoelasticy can
be neglected, so that, to obtain the correct exponent 3.4 for
the molecular weight scaling of the terminal relaxation time
and zero-shear viscosity (Eqs. (1) and (2)), one has to refer
to the constraint-release mechanism. However, one has to
take reptation relaxation into account to obtain the correct
dependence of effects of the second order on the length of
macromolecules. Considering the dilute blends of polymers
in Section 5allows us to collect extra arguments in favour
of the proposed theory. The Conclusion contains discussion
of the problem and consequences for constitutive relations.

2. Modes of motion of a macromolecule in an
entangled system

2.1. Modified Cerf-Rouse modes

2.1.1. Equation of motion
It is known [4,6], that every flexible macromolecule can

be effectively presented as a chain of coupled Brownian par-
ticles (so called bead and spring model), and one can follow
Zwanzig-Mori method described, for example, in mono-
graphs [9,10] to obtain an equation for the large-scale
stochastic dynamics of the entangled system as dynamics
of interacting chains of Brownian particles. The situa-
tion can be simplified more, if one use, similar to works
[11–14], the projector-operator methods once more to de-
rive a dynamic equation for a single chain in the system
of entangled chains. In virtue of the results of these works,
it is natural to present the anticipated dynamic equation
for a chain as stochastic equation with memory function
terms. Dynamics of the probe macromolecule is simplified
by the assumption that the neighbouring macromolecules
can be described as a uniform structureless medium and
all important interactions can be reduced to intramolecular
interactions. The requirements of proper covariance and of
the linearity in co-ordinates and velocities determine[6]
the general form of the equation for the dynamics of the
single macromolecule. In the linear approximation, one can
consider the situation for every Brownian particle to be
isotropic and the mutual hydrodynamic interaction of the
particles to be negligible, so that effective dynamics of the
single chain as the dynamics of coupled Brownian particles
is described by a set of coupled stochastic equations

m
d2rαi

dt2
= −

∫ ∞

0
β(s)(ṙαi − νij r

α
j )t−s ds

−
∫ ∞

0
Gαγϕ(s)(ṙ

γ
i − ωij r

γ
j )t−s ds

− 2µTAαγr
γ
i + φαi (t) (4)
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wherem is the mass of a Brownian particle associated with
a piece of the macromolecule of lengthM/N, rα and ṙα are
the co-ordinates and velocity of the Brownian particle and
2Tµ is the coefficient of elasticity of the spring between
adjacent particles,T is temperature in energy units. The
matrixAαγ depicts the connection of Brownian particles in
the entire chain. The dissipative forces are presented by two
terms containing the memory functionβ(s) andϕ(s). The
first integral term on the right-hand side ofEq. (4) is the
hydrodynamic drag force in the medium moving with mean
velocity gradientνij , so that a particle located at a point
with co-ordinatesrαj is dragged with velocityνij r

α
j . The sec-

ond dissipative term inEq. (4)has a form similar to Cerf’s
approximation[15] of the internal viscosity force for a
macromolecule in a dilute solution and, thus, represents the
intramolecular resistance (kinetic stiffness). Due to the vor-
ticity term ωil = 1/2(νil − νli ), the latter term does not de-
pend on the rotation of the macromolecular coil as a whole.
The symmetrical numerical matrixGαγ represents the influ-
ence of movement of the particleγ on the movement of the
particleα which is considered to be small atγ 	= α, so that it
is expected to be almost diagonal. As an initial approxima-
tion, to express the idea of severe confinement, one can as-
sume that the intramolecular resistance force is determined
equally by all the particles of the chain, so that one has for the
matrixes:

A =

∥∥∥∥∥∥∥∥∥∥∥∥

1 −1 0 . . . 0

−1 2 −1 . . . 0

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

0 0 0 . . . 1

∥∥∥∥∥∥∥∥∥∥∥∥
,

G =

∥∥∥∥∥∥∥∥∥∥∥∥

1 −1/N . . . −1/N

−1/N 1 . . . −1/N

. . . . . . . . . . . .

. . . . . . . . . . . .

−1/N −1/N . . . 1

∥∥∥∥∥∥∥∥∥∥∥∥
. (5)

We have chosen the simplest form of the symmetric matrix
Gαγ , consistent with the requirement that the matrix must
have a zero eigenvalue. This form allows the matrixGαγ

to be transformed into diagonal form simultaneously with
matrixAαγ . All eigenvalues of the matrixGαγ , besides the
zeroth one, are equal to unity, and eigenvalues of the matrix
Aαγ for largeN and smallα are given by

λα =
(πα
N

)2
, α = 0,1,2, . . . ,
 N. (6)

After the transformation, the system ofEq. (4)turns into
a set of uncoupled equations for normal co-ordinates

m
d2ρ0

i

dt2
= −

∫ ∞

0
β(s)(ρ̇0

i − νilρ
0
l )t−s ds + σ0

i (t), (7)

m
d2ραi

dt2
= −

∫ ∞

0
β(s)(ρ̇αi − νilρ

α
l )t−s ds

−
∫ ∞

0
ϕ(s)(ρ̇αi − ωilρ

α
l )t−s ds

− 2µTλαρ
α
i (t) + σαi (t), (8)

where the variableρ0
i is proportional to the mass centre of the

macromolecular coil (diffusion mode), variablesραi , α =
1,2, . . . , N describe relative positions of the particles in
the coil (relaxation modes). Whatever the specification of
the memory functions is,Eqs. (7) and (8)determine linear
modes of motion of the macromolecule in polymer melts –
the modified Cerf-Rouse modes. Note that a particular case
of Eqs. (7) and (8)is a simple equation

m
d2ραi

dt2
= −ζ(ρ̇αi − νilρ

α
l ) − 2µTλαρ

α
i (t) + σαi (t),

α = 0,1, . . . ,
 N, (9)

which describes normal modes of motion of the macro-
molecule in a viscous ‘monomeric’ liquid. This dynamics is
commonly referred to as the Rouse dynamics and indepen-
dent variablesρα in (9) as to Rouse modes.

Statistical properties of the random thermal forces in
Eqs. (7) and (8)are, as usual, defined in such a way, that the
equilibrium values of the calculated quantities are the same
as those already known. The scalar correlation function of
the random force can be introduced

〈σαi (t)σγj (t − s)〉 = K(s)δαγδij . (10)

Fourier transform of the correlation function is connected
with the one-side transform of memory functions

K(ω) = 2TRe(β[ω] + ϕ[ω]).

2.1.2. Approximation of the memory functions
The memory functionsβ(s) andϕ(s) in Eqs. (7) and (8)

cannot be determined from general considerations: they
could be found theoretically as correlation functions of
the random force in microscopic dynamics of interacting
Kuhn-Kramers chains, or, otherwise, the memory functions
ought to chosen in such a way, that the final results describe
empirical facts. At the moment, we have no choice as to
look for empirical memory functions. However, it appears
to be helpful to consider very slow and very fast deforma-
tion of the system which elucidates causes and meaning of
the dissipative forces inEq. (4).

2.1.2.1. Intramolecular friction. For a fast enough defor-
mation (that is, before relaxation can occur), one expects
that the macromolecules deform affinely, i.e., for every
particle ṙαi = νij r

α
j , whereνij is the velocity gradient, and

rαj is the position in space of a particle of a chain. Under
given deformation, the first term from the two terms for
dissipative force inEq. (4) is equal to zero, while the sec-
ond one generates a force proportional toṙαi −ωij r

α
j , where



76 Yu.A. Altukhov et al. / J. Non-Newtonian Fluid Mech. 121 (2004) 73–86

ωij is the vorticity, orγij r
α
j , whereγij is the symmetric part

of the velocity gradient, so that this force is a force of the
intramolecular resistance due to the change in shape of the
macromolecular coil (kinetic stiffness). As far as we con-
sider the coarse-grained approximation, all the neighbouring
chains, or, one can say, the particles of coarse-grained chains
follow the deformation affinely, and there is no apparent
cause for this force. To explain the emerging of the force,
we have to refer to more detailed model of macromolecule
– to the chain of freely-jointed rigid segments. Apparently,
small parts of macromolecules cannot follow the deforma-
tion affinely, segments can only rotate, and an extra force
is needed to change the direction of a segment in the case,
when the segments of the other chains present around. That
is why we can say that the internal resistance force for
a macromolecule in a polymer melt has to be attributed
to the interaction with neighbouring chains, though in the
coarse-grained approximation we forget about segments,
and this force is characterised by only phenomenological
coefficient of internal resistance which can be denoted
asζE.

2.1.2.2. External friction. For very slow deformation of
the system, when all relaxation times are less than a char-
acteristic time of deformation, the macromolecular coil
keeps its equilibrium form, so that the force of internal
resistance (the second dissipative term inEq. (4)) can be
neglected, and the resistance-drag coefficient originated
from the first dissipative term can be written down asζB.
The dimensionless quantityB is a measure of the increase
in the friction coefficient, due to the fact that the particle is
moving among neighbouring macromolecules, perturbing
them. Note that this situation is equivalent to that consid-
ered earlier in molecular terms by the constraint-release
theory, originated by Graessley[7] (a review of subsequent
work can be found in work of Watanabe[2]), so that one
can use the results[7] to estimate the molecular weight
dependence of the coefficient of enhancementB.1 The
constraint-release mechanism suggests that a large-scale
lateral motion of a macromolecule in an entangled system
is possible due to process of release of some constraints
of the probe chain and jumps some parts of the chain in
lateral direction. The lifetime of constraints depends ap-
parently on dynamics of neighbouring macromolecules,
which is assumed to be the dynamics of the same type
as that of the probe macromolecule, and can be consid-

1 One can note that, at slow motion, the constraint-release theory
determines formally the dynamics of a probe macromolecule as a Rouse
dynamics (of the form ofEq. (9)), which can be attributed to as a
certain ‘static’ method of consideration. However, as it was noted recently
by Schieber et al.[16], the process of constraint release is developing
in time and one needs in time scaleτ of the matrix to describe the
process, so that the theory ought to be generalised for this case. One can
consider the stochastic model (4) as a formalisation (for slow motion) and
generalisation of constraint-release mechanisms which can be regarded as
the time-dependent constraint-release model.

ered as a characteristic of the medium in which the probe
macromolecule is moving. Eventually, the consideration
determines the friction coefficient of effective Brownian
particle as

ζB(M0) ∼ M3
0 (11)

whereζ is a ‘monomer’ friction coefficient andB(M0) is
the measure of enhancement of the friction coefficient due
to the presence of neighbouring chains with the lengthsM0.
It is important that this mechanism introduces the depen-
dence of coefficient of enhancement of the friction coeffi-
cient on the length of the neighbouring macromolecules as
B(M0) ∼ M3

0.

2.1.2.3. Concept of microviscoelasticity.In the case, when
one applies the coarse-grained approximation for the de-
scription of chains, each particle of the chain can be consid-
ered as moving in a liquid, which represents a dense system
made of the interacting rigid Kuhn segments. The effective
medium has properties of relaxing liquid; thus, the concept
of microviscoelasticity, instead of the concept of microvis-
cosity in the case of dilute solutions, can be introduced. The
times of relaxation of the surrounding medium are times of
relaxation of the mean orientation of segments. In a dense
system of long linear macromolecules, the motion of a sep-
arate segment is determined strongly by its environment,
being weakly dependent on its position in the chain. The
simplest case assumes that one chooses the single timeτ,
so that one has the law of relaxation for mean orientation of
segments

d〈eiek〉
dt

= −1

τ

(
〈eiek〉 − 1

3
δik

)
(12)

This assumption allows us to write down simple expres-
sions for the one-sided Fourier transforms of the memory
functions

β[ω] = ζ

(
1 + B

1 − iωτ

)
, ϕ[ω] = ζE

1 − iωτ
, (13)

whereζ is the monomer friction coefficient. One needs to in-
troduce some characteristics of the environment,B the mea-
sure of the increase of friction due to interaction with the
neighbouring macromolecules, andE is the measure of in-
tramolecular resistance (internal viscosity). One can see that
the above speculation is nothing more as an assumption that
the environment of a Brownian particle is characterised by
the only relaxation time and the quantitiesB andE are phe-
nomenological (mesoscopic) characteristics of the dynam-
ics of a single macromolecule in the system of interacting
macromolecules. With comparison with results of molecular
theories (as above), the meaning of introduced parameters
can be elucidated. Thus, one can assume that the parameter
B in Eq. (13)is a function of the length of the neighbouring
macromolecules in the form

B ∼ Mδ. (14)
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One can consider the indexδ to be an empirical index in
the theory, which has, as we see inSection 4, the empirical
values 2.4 - 3 in accordance with the theoretical estimate 3
due to the constraint-release theory. An alternative estima-
tion of the index, from friction of moving overlapping coils
[6], gives an estimate of the index> 2.

2.1.3. Mobility of a macromolecule
It is known that the macromolecule in a viscous liq-

uid (dilute solution) moves as a Brownian particle and its
mean square displacement is given by the standard expres-
sion

〈*q2〉 = 6D0t, D0 ∼ M−1 (15)

whereD0 is the coefficient of the diffusion of the macro-
molecular coil in viscous liquid which is inversely propor-
tional to the length of macromoleculeM for freely draining
coils.

So as the co-ordinateq of mass centre of macromolecular
coil is proportional to the zeroth normal co-ordinateρ0,
it is not difficult to calculate[6], usingEqs. (7) and (13),
the mean square displacement of the centre of mass of a
macromolecule in entangled system

〈*q2〉 = 6D0
τ

B

( t
τ

+ 1 − e−tB/τ
)
. (16)

whereD0 has the same meaning as in the previous formula.
The displacement as a function of the ratiot/τ has a plateau
which is the longer, the longer the macromolecule. The value
of the function on the plateau can be taken as a definition
of an intermediate length

ξ2 = 6D0
τ

B
(17)

Up to intermediate lengthξ the macromolecule diffuses
as a particle in viscous fluid. For long times of observation
t 
 τ, the mean displacement of the particle is unrestricted
and is proportional to time, so that the diffusion coefficient
can be determined fromEqs. (15) and (16)as

D = D0B
−1 ∼ M−1−δ. (18)

2.1.4. Relaxation times
To calculate relaxation times, one considers equilibrium

correlation function of normal co-ordinates

〈ραi (t)ραk (t − s)〉0 = Mα(s)δik

The angle brackets denote the averaging over the ensemble
of the realisation of the random forces in a dynamic equa-
tion.

In the simplest case – macromolecule in a viscous liquid
– one can use the Rouse modes (9) to determine the equi-
librium correlation function as

Mα(t) = 1

2µλα
exp

(
− t

2τR
α

)
. (19)

There are many internal relaxation modes, so that one has a
set of relaxation times

τR
α = τ∗/α2, τ∗ = ζN〈R2〉

6π2T
∼ M2, α = 1,2, . . . 
 N.

(20)

whereζ is the friction coefficient of a Brownian particle (ζ ∼
N−1),M is the length or the molecular weight of the macro-
molecule,〈R2〉 is the mean squared end-to-end distance of
the macromolecule andτ∗ is the largest relaxation time of
the macromolecule – a characteristic Rouse relaxation time.

For the modified Cerf-Rouse dynamics (8), an equilib-
rium correlation function can be found[6] after simple cal-
culations

Mα(t)= 1

2µλα

[
S+
α exp

(
− t

2τ+
α

)
− S−

α exp

(
− t

2τ−
α

)]
(21)

where

S±
α = τR

α (1 + B + E) − τ∓
α

τ+
α − τ−

α

,

2τ±
α = τα ± (τ2

α − 2ττR
α )

1/2,

τ+
α = τα − ττR

α

2τα
, τ−

α = ττR
α

2τα
.

τα = τ

2
+ τR

α (1 + B + E) = τ∗B
(
χ + 1

α2
(1 + E/B)

)
,

χ= τ

2Bτ∗

In contrast to the original Rouse modes, the modified
Cerf-Rouse modes of a macromolecule in an entangled sys-
tem give two conformation relaxation branchesτ+

α andτ−
α .

We shall consider the situation atB 
 1 which allows us to
neglect the branch of small relaxation times. The largest re-
laxation times decreases monotonically fromτ∗(B+E) till
τ/2, when the mode number increases. Further on, we are
going to compare the relaxation times for small mode num-
bers, so that it is convenient to use the asymptotic formula

τ+
α = (B + E)τR

α , τR
α = τ∗

α2
,

α = 1,2, . . . ,

(

1 + E/B

χ

)1/2

(22)

2.1.5. Localization of macromolecule
A more detailed analysis shows[6] that, atE/B 
 1, the

mean displacement of every Brownian particle in a chain

*α(t) =
3∑
i=1

〈[rαi (t) − rαi (0)]
2〉0, α = 0,1, . . . , N.

is restricted: the particle does not go further that a certain
distance for a timeτ/B. The fulfillment of the relation

E

B
= π2

χ
(23)
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ensures the existence of universal (independent on the
length of a macromolecules) intermediate lengthξ, defined
by Eq. (17). The parameterχ introduced in the previous
Subsection is, in fact, the ratio of the squared diameter
of the intermediate length to the mean squared end-to-end
distance of the macromolecule

χ = τ

2Bτ∗ = π2

8

(2ξ)2

〈R2〉 ≈ (2ξ)2

〈R2〉 ∼ M−1. (24)

For observation timest 
 τ, the small-scale motion of
the particles confined to the scaleξ can take place, and the
large scale chain conformation is frozen. Up to intermedi-
ate lengthξ the macromolecule diffuses as a particle in vis-
cous fluid. The displacement of every particle of the chain is
restricted; the macromolecule remains near its original po-
sition for some time – localization effect. It looks like un-
bounded lateral motion of a macromolecule is suppressed
due to the entanglement of the probe macromolecule with its
many neighbouring coils which, as can be believed, effec-
tively constitutes a “tube”. One can regard 2ξ as the diame-
ter of a tube within which the macromolecule moves freely.
However, in fact, one needs no temporary knots, no entan-
glements, no tube to explain dynamics of polymer systems.
The immediate consequence of the modified Cerf-Rouse dy-
namics of a macromolecule is emerging of a certain inter-
mediate lengthξ which is connected with the relaxation time
of interacting segmentsτ.

One can note that the existence of the intermediate length
in entangled polymers can be considered as a reliable fact
due to neutron spectroscopy experiments[17].

2.2. Reptation modes

The motion of the Brownian particles of the chain, de-
scribed by linearEq. (4), is essentially restricted by forces of
external and internal resistance which make difficult for the
macromolecule to change large-scale conformation. How-
ever, these forces do not appear at motion of particles of the
chain along its contour. Coherent motion of the particles of
the chain along its contour is consistent with topological in-
tegrity of macromolecules, the macromolecule moves like a
snake – this is the reptation motion.

2.2.1. Doi–Edwards model
To model the reptation motion of the macromolecule, it

is necessary to introduce the anisotropy of the mobility for
every particle (bead) in the considered coarse-grained model
of a macromolecule. The scalar quantityB in formula (12)
ought to be substituted by a tensor quantity for each particle
of the chain to make mobility of a particle along the axis of
a macromolecule bigger than mobility in the perpendicular
direction, so that the entire macromolecule can move more
easily along its contour. The introduction of anisotropy of
the particle mobility makes the dynamic equation non-linear,
which introduces difficulties for analysis. However, in this
case one can exaggerate anisotropy of mobility, assuming

that unbounded lateral motion of particles is completely
suppressed due to the presence of many neighbouring
macromolecules. By this way, one comes to a very elegant
linear model of reptating macromolecules proposed by Doi
and Edwards[3]. The diameter of ‘tube’, within which the
macromolecule moves as a particle in a viscous liquid, is
postulated in Doi–Edwards model[3,4]. But, it is natural to
identify the radius of ‘the tube’ in Doi–Edwards model with
the emerged in previous model intermediate lengthξ. We
use a special symbol for the radius of the tubeξ, because
the original diameter of the tube, postulated by Doi and
Edwards[4], is slightly different from the quantity 2ξ.

As before, we shall consider a chain consisting ofN + 1
Brownian particles to be a proper schematisation of a macro-
molecule but, following Doi and Edwards[3], we assume
that the distance between adjacent particles along the chain
is constant and equal toξ, so that the arbitrary number of
particles satisfies the condition

Nξ2 = 〈R2〉. (25)

The states of the macromolecule can be considered in
points of time in a time interval*t, so that the stochastic
motion of Brownian particles of the chain can be described
by the equation for the particle co-ordinates

r0(t + *t) = 1 + φ(t)

2
r1(t) + 1 − φ(t)

2
[r0(t) + v(t)],

rν(t + *t)= 1 + φ(t)

2
rν+1(t) + 1 − φ(t)

2
rν−1(t),

ν = 1,2, . . . , N − 1,

rN(t + *t)= 1 + φ(t)

2
[rN(t) + v(t)] + 1 − φ(t)

2
rN−1(t)

(26)

whereφ(t) is a random quantity, which takes the values+1
or −1, andv(t) is a vector of constant lengthξ and random
direction, so that

〈φ(t)φ(u)〉 = δtu, 〈φ(t)〉 = 0,

〈v(t)v(u)〉 = δtuξ
2, 〈v(t)〉 = 0. (27)

The set ofEq. (26) describes the stochastic reptation
motion of a chain. The “head” and the “tail” particles of
the chain can choose random directions. Any other particle
follows the neighbouring particles in front or behind. The
smaller the time interval*t the quicker moves the chain.
Clearly, the time interval can not be an arbitrary quantity
and is specified by Doi and Edwards as

*t = ζN

2T
ξ2 (28)

2.2.2. Mobility of macromolecule
Reptation of macromolecules was specially invented to

describe long-time dependence of the diffusion coefficient
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of macromolecules on their length. Indeed, one can di-
rectly obtain the well known[4] results fromEqs. (26)
and (27)

〈*q2〉 = 6D0
ξ2

〈R2〉 t, (29)

whereD0 is the coefficient of the diffusion of the macro-
molecular coil in ’monomer’ viscous liquidD0 ∼ M−1,
ξ is an intermediate length and〈R2〉 is the mean squared
end-to-end distance of the macromolecule.

2.2.3. Relaxation times
It is not difficult to obtain an expression for the correlation

functionMα(t) and estimate times of relaxation due to the
reptation mechanism. According to Doi and Edwards [[4],
p. 196], equilibrium correlation function is written as

Mα(t) = 1

2µλα
exp

(
− t

2τrep
α

)
, (30)

τ
rep
α = ζξ2N3

2π2 T

1

α2
= 3〈R2〉

ξ2

τ∗

α2
= 3

2

π2

χ

τ∗

α2
,

α = 1,2, . . . ,
 N. (31)

The time behaviour of the equilibrium correlation function
is described by a formula which is identical to formula for a
chain in viscous liquid (Eq. (19), while the Rouse relaxation
times are replaced by the reptation relaxation times.

3. Weakly and strongly entangled systems

One of the two models, considered in the previous Sec-
tion, successfully imitates the basic isotropic stochastic mo-
tion of the particles of the chain among the neighbour-
ing chains, while the other is needed to describe special
motion of the macromolecule – the original non-amended
reptation-tube model[3]. One can expect that reptation mo-
tion could emerge as non-linear effect from the ‘correct’
model. Instead of a single non-linear unknown equation, we
have to use two sets of linear equations stitching up the re-
sults. We consider these two models as complementary mod-
els and combine the results, unless a unified ’correct’ model
is available.

3.1. Diffusion of macromolecule

For long times of observationt 
 τ, there are two compet-
itive mechanisms of mobility of macromolecule: due to mo-
tion through the sea of segments (constraint-release mecha-
nism) and due to reptation. The diffusion coefficient can be
defined due toEqs. (19) and (29)as

D = D0

(
1

B
+ ξ2

〈R2〉
)
.

The combination of the relations for diffusion defines a point
of changing of mechanisms of mobility by relationχB =
π2/2, so that one can write

D=D0 ×
{
B−1 ∼ M−1−δ, 2χB < π2, no reptation

2π−2χ ∼ M−2, 2χB > π2, reptation
.

(32)

whereD0 is the coefficient of the diffusion of the macro-
molecule in a viscous monomeric liquid. The transition point
between weakly and strongly entangled systems will be es-
timated inSection 3.3where experimental evidence on the
transition point also will be discussed.

3.2. Conformational relaxation

The mean size and shape of the macromolecular coil in
a deformed system are described by the non-equilibrium
correlation functions

〈ραi (t)ραk (t)〉, 〈ραi (t)ραk (t)〉0 = 1

2µλα
δik,

where the angle brackets denote averaging over the ensem-
ble of realisation, while the subscript zero denotes the equi-
librium situation. As an internal variable, it is convenient to
use the dimensionless quantity

xαij = 2
3µλα〈ραi ραj 〉, (xαij )0 = 1

3δij .

In the overdamped regime(m = 0), the mean sizes of the
macromolecule relax to equilibrium values according to the
law

d

dt
xαik = − 1

τα

(
xαik − 1

3
δij

)
(33)

One has to take into account that the relaxation timesτα in-
cludes contributions from the diffusive and reptation mech-
anism of relaxation

1

τα
= 1

τ+
α

+ 1

τ
rep
α

.

The two mechanisms of relaxation compete and one
has to compare the different conformational relaxation
branches of the macromolecule coil which are defined by
relations (22) and (31). Considering that for the strongly
entangled systemsE > B and for the weakly entangled
systemsE < B, one can compare the above relations for
relaxation times atE = B to conclude that the reptation
mechanism predominates at 4χB > π2/3, so that the con-
formational relaxation times for entangled system can be
written as

τα =
{
BτR

α ∼ Mδ
0M

2, (4/3)χB<π2, no reptation

(π2/χ)τR
α ∼ M0

0M
3, (4/3)χB > π2, reptation

(34)
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It is convenient to distinguish the probe macromolecule (with
molecular weight or lengthM) and the neighbouring macro-
molecules (with the lengthM0), even if all of them are equal.
Note that the top line inEq. (34), atδ = 3 restores the result
of the constraint-release theory[7], while the bottom line
presents the results of reptation dynamics.

3.3. Transition point between weakly and strongly
entangled systems

The conditions determining a point of transition to emerg-
ing of reptation motion of macromolecules are slightly
different for diffusion (relations 32) and for relaxation
(relations 34). It is possible to believe, taking some arbi-
trariness in the definition of the relaxation transition point
into account, that these conditions coincides, so that one
has a single dynamic transition point between weakly and
strongly entangled systems, determined by equation

χB = 1
2π

2

To find out a dynamic transition pointχ∗, which separates
the strongly entangled (χ < χ∗) and weakly entangled (χ >

χ∗) systems, one can consider the quantityB to be a function
of χ which, in virtue of relations (14), (24) and (47), can be
written as power function

B = (2χ)−δ, χ < 0.5 (35)

It is not difficult then to find a solution of theEq. (35),
taking into account the empirical valueδ ≈ 2.4, and to
estimate the position of the transition point

χ∗ ≈ 0.1 or M∗ ≈ 10Me. (36)

It is remarkable that there is a region betweenMc and
M∗ in which the entangled system can be considered dif-
ferently from the region of macromolecular lengths above
M∗. The empirical results (2) and (3) confirm the position
of the transition point next to 10Me, which can be inter-
preted as the transition point between weakly and strongly
entangled systems, and determine the difference in relax-
ation behaviour for the two types of entangled systems. The
comparison between empirical and theoretical results shows
that, while the molecular-weight dependencies of relaxation
times for weakly entangled systems (the top lines inEqs. (2)
and (34)), at δ = 2.4 coincide, there is disagreement be-
tween the results (the bottom lines inEqs. (2) and (34)) for
the strongly entangled systems. However, one can note that
Eq. (2)determine the terminal relaxation time of viscoelas-
ticity, whereasEq. (34) determines conformational relax-
ation time of macromolecules, and the comparison shows
that these relaxation times are not identical. In fact, as one
can see in the next Section, they are different for strongly
entangled system.

Data on diffusion of linear polymers also demonstrate the
existence of the region of weakly entangled systems. Data
of different scholars, collected by Watanabe[2], directly

demonstrate the existence of the two critical points. The
first critical point, Mc ≈ 2Me, determines the transition
between non-entangled and entangled systems. The position
of the second transition point can be estimated from the
data for diffusion of polybutadiene molecule [[2], p. 1333]
asM∗ ≈ 10Me, while the slope of the dependence in the
region betweenMc and M∗ can be approximated as 3.4
which gives, according toEq. (32), an estimateδ = 2.4.

4. Viscoelasticity of strongly entangled systems

It is well known [4] that, when viscoelastic behaviour
of the entangled system is considered on the base of the
reptation dynamics, one obtains the following relations for
coefficient of viscosity and terminal relaxation time

η ∼ M3, τ ∼ M3.

The small deviation of the derived value of the exponent
3 from the empirical value 3.4 gave rise to hopes that some
improvements of the reptation dynamics could bring the cor-
rect result. However, to appreciate this result properly, one
has to distinguish the probe macromolecule (with molecular
weight or lengthM) and the neighbouring macromolecules
(with the lengthM0), even if all of them are equal. The de-
rived coefficient of viscosity and terminal relaxation time do
not depend on the length of neighbouring macromolecules,
so that the result of the Doi–Edwards approach[4] can be
written for terminal relaxation time as

τ ∼ M0
0M

3 (37)

The effect of lengths of the probe and neighbouring
macromolecules can be separated experimentally by inves-
tigating dilute blends of polymers (seeSection 5). The data,
reported by Watanabe [[2], p. 1353] show that, in contrast
to Eq. (37), terminal relaxation time depends on the molec-
ular weight of neighbouring macromolecules, whereas
the exponent in the dependence on the length of a probe
macromolecules is less than 3. One can say that result (37)
qualitatively contradicts to empirical data, this is a major
problem encountered the Doi–Edwards theory based on the
reptation dynamics, and modification of reptation dynamics
(contour length fluctuation model, for example) could not
recover the empirical relation. One has to pay attention to
alternative mechanism of relaxation via constraint release
and its possible generalisations.

In this situation, we chose to apply to the modified
Cerf-Rouse modes to calculate the characteristics of vis-
coelasticity. One can note that chains with intramolecular
resistance (which assumably are chains in an entangled
system as described inSection 2.1) have two branches of
relaxation times: conformational (reptation for the case of
strongly entangled systems) and orientational (or trans-
verse). Using the dynamics (4) to calculate stresses in the
system of strongly entangled macromolecules, one takes
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into consideration both conformational and orientational
branches of relaxation. Viscoelastic behaviour of the system
is determined by interplay of the two relaxation branches
(at low frequencies; one has to take into account the other
relaxation branches to consider the higher frequencies).

4.1. Constitutive relations

4.1.1. Stress tensor
Method of Rice and Gray[18] was used to calculate the

stress tensor of the system as a stress tensor of the suspension
of Brownian particles[6]. The result for the system governed
by dynamics (4) can be conveniently written, using two sets
of macroscopic internal variables, in the compact form

σik = −pδik + 3nT
∑
ν

(
xνik − 1

3
δik + uνik

)
. (38)

wheren is the number density of macromolecules. The first
set of variablesxαij – conformational variables – characterises
the mean size and shape of the macromolecular coils in a de-
formed system, while the second set of variablesuαij – orien-
tational variables (the name is justified earlier [[6], p. 126])
– is associated with stresses induced by internal resistance
forces of macromolecules. Pressurep includes both the par-
tial pressure of the gas of Brownian particlesn(N + 1)T
and the partial pressure of the carrier “monomer” liquid.
We shall assume that the viscosity of the ‘monomer’ liquid
can be neglected. According to the mesoscopic approach,
the stress tensor of a system is determined as a sum of the
contributions of all the macromolecules, which in this case
can be expressed by simple multiplication by the number of
macromoleculesn.

4.1.2. Relaxation equations
The macroscopic internal variablesxνik and uνik can be

found as solutions of relaxation equations which are differ-
ent for weakly and strongly entangled system. After simple
operations over dynamicEq. (8), one can obtain[6] a set
of relaxation equations for the internal variables, which, for
strongly entangled systems, can be written in the form

dxαik
dt

− νijx
α
jk − νkjx

α
ji = − 1

τ
rep
α

(
xαij − 1

3
δij

)
, (39)

duαik
dt

− ωiju
α
jk − ωkju

α
ji

= −1

τ
uαik − 1

τ

(
xαik − 1

3
δik − 2BτR

α x
α
ilγlk

)
+ B

E
γilu

α
lk.

where the set of relaxation times is defined as

τ, τ
rep
α = π2

χ
τR
α , τR

α = τ∗

α2
, α = 1,2, . . .
π

χ
. (40)

Some approximations were introduced inEqs. (39). The
times of relaxation for orientational variablesuαik, strictly
speaking, slightly depend on the number of the mode, but

this dependence is ignored here. Conformational relaxation
times are considered to be reptation relaxation times. InEq.
(39)and later, notation for the symmetric and antisymmetric
velocity gradient tensors are used

γil = 1
2(νil + νli ), ωil = 1

2(νil − νli ).

4.2. Linear effects of viscoelasticity

The set ofEqs. (38)–(40)allows us to calculate stresses
at any given velocity gradients. To characterize linear vis-
coelasticity and calculate dynamic modulus, we consider os-
cillatory motion with gradient of velocity

νik ∼ e−iωt

Keeping only the first-order terms with respect to velocity
gradient, the set of relaxationEq. (39)for the internal vari-
ables can be written in the simpler form

dxαik
dt

= − 1

τ
rep
α

(
xαik − 1

3
δik

)
+ 2

3
γik.

duαik
dt

= −1

τ
uαik − 1

τ

(
xαik − 1

3
δik − 2

3
BτR

α γik

)

where the set of relaxation times is defined byEq. (40).
These equations. have the following solutions for oscilla-

tory motion

xαik = 1

3
δik + 2

3

τ
rep
α

1 − iωτ
rep
α

γik,

uαik = 2

3

(
B τR

α − τ
rep
α

1 − iωτ
rep
α

)
1

1 − iωτ
γik.

Then, one can make use of the expression (38) for the
stress tensor to obtain the coefficient of dynamic viscosity

G(ω)= nT
π/χ∑
α=1

[
−iωτ

rep
α

1 − iωτ
rep
α

+
(
BτR

α − τ
rep
α

1 − iωτ
rep
α

)
−iω

1 − iωτ

]
. (41)

The first terms under the sum in this relation presents the
direct contribution of the reptation relaxation. Having evalu-
ated, these terms give us the results of Doi–Edwards theory.

The terms of the first and the second orders in expansion
of expression (41) in powers of−iω give, correspondingly,
the coefficients of viscosity and elasticity

η = nT
π/χ∑
α=1

BτR
α = π2

6
nTτ∗B ∼ Mδ

0M (42)

ν= nT
π/χ∑
α=1

(BττR
α − ττ

rep
α )

= nT

(
π2

3
(Bτ∗)2χ − π4

3
B(τ∗)2

)
≈ π2

3
nT(Bτ∗)2χ (43)
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The terminal viscoelastic relaxation time

τ = ν

η
= 2Bτ∗χ ∼ Mδ

0M. (44)

appears to be equal to the relaxation time which was in-
troduced to characterise the medium surrounding the probe
macromolecule. Thus, for the strongly entangled systems,
the theory is self-consistent and this confirms the statement
of Section 2.1.2that chains of Brownian particles can be
considered as moving independently in a liquid made of in-
teracting Kuhn segments.

One can see that, in contrast to relation (37), terminal
time of relaxation (44) depends on the length of both a
probe macromoleculeM and neighbouring macromolecules
M0, which is consistent with experimental data (see the
next section). The estimate of exponentδ, according to the
constraint-release theory, is 3, while the empirical valueδ ≈
2.4 can be found at the comparison expressions (42) and
(44) with empirical relations (1) and (2) for strongly en-
tangled systems. However, the assumption that there is hy-
drodynamic interaction between Brownian particles of the
probe macromolecule changes the dependencies (42) and
(44) in such a way, that empirical value of exponentδ would
be more that 2.4 and closer to 3 in accordance with the
constraint-release estimates. The presence or absence of hy-
drodynamic interaction can be discovered experimentally by
measuring the characteristic quantities for dilute blends of
linear polymers (seeSection 5.2).

Value of the dynamic modulus on the plateau can be found
asGe = limω→∞G(ω) which gives

Ge = nT
π/χ∑
α=1

(
1 + BτR

α

τ

)
≈ nT

(
π

χ
+ π2

12

1

χ

)
(45)

The contribution from the first term (reptation branch) has
the same order of magnitude as the contribution from the
second term at very high frequencies. However, the differ-
ence in the distribution of relaxation times determines that
the plateau from the reptation branch is reached at much
higher frequencies than from the orientational branch, so
that, for the strongly entangled systems, one can approxi-
mate dynamic modulus on the plateau as

Ge = π2

12
nTχ−1 ∼ M0. (46)

This relation allows one to introduce the interpretation of
the parameterχ as

χ = π2

12

Me

M
≈ Me

M
. (47)

In the case of strongly entangled systems, conformational
relaxation is realized through reptation mechanism, though
the main contribution into linear viscoelasticity of the sys-
tem came from relaxation of orientational variables. To
describe linear viscoelasticity at low frequencies, one can
neglect conformational relaxation, whatever the mechanism
is realized, at all.

4.3. The second order effects

Though we do not need practically in the conformational
branch to describe linear viscoelasticity, it appears to be
impossible to describe correctly experimental situation in the
non-linear region avoiding conformational, exactly reptation
relaxation. We shall illustrate this on the example of shear
when one of the components of the velocity gradient tensor
has been specified and is constant, namelyν12 	= 0. In order
to achieve such a flow, it is necessary that the stresses applied
to the system should be not only the shear stressσ12, as in
the case of a linear viscous liquid, but also normal stresses,
so that the stress tensor is∥∥∥∥∥∥∥
σ11 σ12 0

σ21 σ22 0

0 0 σ33

∥∥∥∥∥∥∥ .
The shear stressσ12 and the differences between the nor-

mal stressesσ11 − σ22 andσ22 − σ33 are usually measured
in the experiment. The results of calculation of the stresses
up to the second-order terms with respect to the velocity
gradient will be demonstrated further on.

For calculation of shear viscosity and normal stresses, we
useEq. (38)for the stress tensor and relaxationEq. (39). To
the first approximation with respect to the velocity gradient
ν12, one determines the only component of the stress tensor
— the shear stress

σ0
12 = η0ν12, η0 = π2

6 nTBτ∗, χ < 0.5 (48)

The terms of the second order allow us to determine nor-
mal stresses and calculate the measurable quantities – dif-
ferences of the normal stresses

σ11 − σ22 = 2π2

3 nTχ (Bτ∗ν12)
2, (49)

σ22 − σ33 = nT

(
π6

90

1

χB
+ 1

3
χ2 − π2

3
χ

)
(Bτ∗ν12)

2

The two quantities are used to characterise the system:
the steady-state modulus and the ratio of the normal stresses
differences, correspondingly,

2σ2
12

σ11 − σ22
= π2

12
nTχ−1 ∼ M0 (50)

σ22 − σ33

σ11 − σ22
= π4

60

1

χ2B
+ 1

2π2
χ − 1

2
(51)

The steady-state modulus (50) does not contain the un-
known functionB(M) and, in accordance with experimental
data [1,19] for strongly entangled system (M > 10Me),
does not depend on the molecular weight of the polymer,
while the expression for the modulus is exactly the same
as for the plateau value of the dynamic modulus (Eq. (46)).
Note that, if one neglect the reptation relaxation branch or
chose another dependence for the rate of reptation relax-
ation instead of the lawτrep ∼ M3, one would obtain quite
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different dependence of the steady-state modulus (50) on
molecular weight. This confirms that reptation motion is
needed for description of non-linear viscoelasticity, while
the law of the reptation relaxationτrep ∼ M3 is not needed
in any amendments.

5. Viscoelasticity of dilute blends

By studying a mixture of two polymers, one of which is
present in much smaller amounts – a dilute blend, one has
a unique opportunity to obtain direct information about the
dynamics of a single macromolecule among the neighbour-
ing macromolecules[20]. The change in the stress produced
by the small amount of macromolecules of another length is,
clearly, determined by the dynamics of the non-interacting
impurity macromolecules among the macromolecules of an-
other length, so that this case is of particular interest from
the standpoint of the theory of the viscoelasticity of linear
polymers.

5.1. Relaxation of probe macromolecule

Consider a system consisting of linear polymer with
molecular weightM0 and a small impurity of a similar
polymer with a different molecular weightM. We shall
assume that the amount of the high-molecular-weight ad-
ditive is so small that its molecules do not interact with
each other. The matrix is characterized by the characteristic
lengthMe – the length of macromolecule between adjacent
entanglements. It is convenient to use the characteristic
parameters for the macromolecules of the matrix and the
additive, which, respectively, are

χ0 ≈ Me

M0
, χ ≈ Me

M
. (52)

Apart of relaxation due to constraint-release mechanism,
the probe macromolecule relaxes due to reptation. The two
relaxation mechanisms compete and to uncover which mech-
anism of relaxation of a probe macromolecules of the ad-
ditive is realised, one has to compare the relaxation times
from (34) to obtain the condition for realisation of reptation
relaxation

2χB(χ0) > π2 (53)

In the case whenM = M0, this relation define the crit-
ical lengthM∗ which divides weakly (macromolecules do
not reptate) and strongly (macromolecules reptate) entan-
gled systems. Similar to the procedure inSection 3.3, one
can find that the characteristic parameters in the point, where
the mechanism of relaxation of macromolecules of the ad-
ditive changes, are connected by relation

χ = 2δ−1π2χδ0 (54)

This relation can be rewritten in terms of the lengths of
macromolecules as

MMδ−1
e

Mδ
0

= 1

2δ−1π2
(55)

One can see that, atδ = 3, the left-hand side of the
relation coincides with the Struglinski-Graessley parameter
[21] which, as one can easily calculate, has critical value
0.024 forδ = 3 and 0.04 forδ = 2.4. Relation (55), atM =
M0, is an identity for critical valuesM∗ ≈ 10 atδ = 2.4 or
M∗ ≈ 7.3 at δ = 3.

For the matrix of short macromolecules, whenM0 < M∗,
the transition point for a probe macromolecule of the addi-
tive is also situated in the short-length region, so that the
macromolecules of the additive, which are longer thanM0
or M∗, do not reptate. However, if the matrix is made of
macromolecules, for whichM0 > M∗, there is a region be-
tweenM∗ and

M∗∗ = Mδ
0

2δ−1π2Mδ−1
e

(56)

in which a probe macromolecule of the additive reptates.
However, the macromolecules of additive longer thatM∗∗
do not reptate in the matrix of shorter macromolecules
with M0 > M∗, so that one has to discuss two cases:
non-reptating and reptating macromolecules.

5.2. Characteristic quantities

The system containsn0 matrix macromolecules andn
impurity macromolecules per unit volume and can be char-
acterised by dynamic modulusG(ω). The increase in dy-
namic modulus, taking into account the fact that some of the
macromolecules of the matrix have been replaced by impu-
rity macromolecules, can be written as

G(ω) − G0(ω) = n

(
g(ω) − M

M0
g0(ω)

)
(57)

whereg(ω) andg0(ω) are the contributions to the dynamic
modulus from a single macromolecule of the impurity and
the matrix, respectively. Further on, we consider low fre-
quencies for which

G(ω) ≈ −iωη − νω2, G0(ω) ≈ −iωη0 − ν0ω
2.

We shall assume that the macromolecules of the matrix
are long enough, so that, according to theEqs. (42) and (43),
one has for coefficients of viscosity and elasticity

η0 = π2

6
n0Tτ

∗
0B,

ν0 =




π4

90
n0T(τ

∗
0B)

2, M0 < M∗,

π2

3
n0T(τ

∗
0B)

2χ0, M0 > M∗,
(58)

where n0 ∼ M−1 is the number of the matrix macro-
molecules per unit volume andτ∗

0 ∼ M2
0 is the characteristic

Rouse relaxation time of the macromolecules of the matrix.
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The contribution ofn macromolecules of the additive into
the coefficients of viscosity and elasticity of the blend are
defined as

η= π2

6
nTτ∗B, ν =




π4

90
nT(τ∗B)2, M > M∗∗,

π2

3
nT(τ∗B)2χ, M < M∗∗,

(59)

whereτ∗ ∼ M2 is the characteristic Rouse relaxation time
of the macromolecules of the additive. Note that, while the
relaxation timeτ∗ is a function ofM, the quantityB has to
be considered as a function ofM0.

We investigate the case of very dilute blends and introduce
the characteristic quantities

[η] = limc→0
ηb − η0

cη0
, [ν] = limc→0

νb − ν0

cν0
, (60)

which are apparently functions of the length (or molecular
weight) of the macromolecules of the matrix and the impu-
rity. The index 0 refers to the matrix andc is the impurity
concentration.

To calculate the quantitiesηb − η0 andνb − ν0, we use
Eqs. (58) and (59). Taking all the above into account, one
can calculate expressions for the increase of viscosity and
elasticity, assuming thatM > M∗, and find expressions for
the characteristic quantities in the form

ηb − η0 = π2

6
nTτ∗B

(
1 − M0

M

)
, (61)

νb − ν0 =




π4

90
nT(τ∗B)2

(
1 − M3

0

M3

)
,

M0 < M∗,

π2

3
nT(τ∗B)2

Me

M

(
1 − M2

0

M2

)
,

M0 > M∗,M < M∗∗,

π4

90
nT(τ∗B)2

(
1 − 30

π2

MeM
2
0

M3

)
,

M0 > M∗,M > M∗∗.

Using the above relations andEq. (60), one finds that for
M 
 M0

[η] ∼ M−1
0 M, [ν] ∼



M−3

0 M3, M0 < M∗,

M−2
0 M2, M0 > M∗,M < M∗∗

M−2
0 M3, M0 > M∗,M > M∗∗.

(62)

On the other hand, whenM 
 M0 (this condition ex-
cludes the caseM0 < M∗) the characteristic quantities are
negative and are independent of the length of the matrix and
of the impurity macromolecules

[η] ∼ M0
0M

0, [ν] ∼ M0
0M

0, M0 > M∗ (63)

Results (62) and (63) do not depend upon any choice of
the dependence ofB on the length (molecular weight) of
macromolecules.

The results[22] of empirical investigation of viscoelas-
tic behaviour of dilute blends of polymers allow us to esti-
mate[20] characteristic quantities for polybutadiene by the
dependencies

[η] ∼ M−0.8
0 M0.5, [ν] ∼ M

−(1.8→2.2)
0 M1.3→3.0. (64)

The comparison of the theoretical formulas (62) with the
experimental ones (64) shows the consistency of the results,
though the absolute values of indexes in formula for char-
acteristic viscosity has appeared to be less that theoretical
value 1. Unfortunately, the accuracy of original empirical
data (in fact, the required linear dependence of quantities on
concentration had never been reached in the work[22]) does
not allow one to say whether there are any certain deviations
from relations (62) or not. If relations (64) are confirmed, it
could mean that there are some unaccounted issues (intra-
chain hydrodynamic interaction, for example) which would
decrease in values of the index. Apparently, one needs in ex-
tra experimental data for different polymer systems in both
weakly and strongly entangled states to analyse the situation
in more details.

5.3. Terminal relaxation time

It was assumed that the quantityB is a function ofM0,

but, luckily, one does not need in expression for explicit
dependence to obtain the final results (62) and (63) for
characteristic quantities for dilute blends of linear poly-
mers. However, the dependence of the quantityB on M0
or, in other terms, the value of exponentδ can be recovered
due to empirical data. To estimate this dependence, one can
consider the terminal relaxation time

τ = νb − ν0

ηb − η0

and useEq. (61)to obtain forM > M∗

τ ∼



B(M0)M

2, M0 < M∗,
B(M0)M, M0 > M∗,M < M∗∗

B(M0)M
2, M0 > M∗,M > M∗∗.

(65)

The first line is valid for the case when matrix is a weakly
entangled matrix, the second and the third lines – a strongly
entangled matrix.

Watanabe ([2], p. 1354) has deducted that, according to
experimental data for polystyrene/polystyrene blends, when
the matrix is a weakly entangled system, terminal time of
relaxation depends on the lengths of macromolecules as

τ ∼ M3
0M

2, (66)

while also for polystyrene/polystyrene blends,[23] found
different values of indexes (2.3 instead of 3 and 1.9 instead
of 2); the difference is discussed by Watanabe ([2], p. 1356).
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No empirical relation, similar to relation (66), is available
for strongly entangled systems, but, as it can be seen in plots
of the paper[2], that the value of the first index are less
that 3 in this case. It is possible that situation is different for
weakly and strongly entangled systems, so that values of the
index in formula (66) could be different for these two types
of systems.

Comparing formulae (65) and (66) allows one to estimate
the dependence of coefficient of enhancement on the lengths
of macromolecules as

B ∼ M3
0, (67)

that isδ = 3, in contrast with previous estimate of the index,
due toEq. (42) for viscosity, as 2.4. The last value of the
index, as discussed in the end of the previous Subsection,
is followed the suggestion that hydrodynamic interaction
inside macromolecular coils is ignored. One cannot exclude
that empirical value of the index, due toEq. (42)), could be
closer to 3, but, in this case, value of the second index in
Eq. (65)must be less.

There is some contradiction of empirical result (66) with
the reliable results for monodisperse (M0 = M) system. In-
deed, taking result (67) into account, the terminal relaxation
time (44) can be written as

τ ∼
{
M5, M < M∗

M4, M > M∗ (68)

To provide the correspondence to the empirical dependen-
cies of viscosity and terminal relaxation time on the molec-
ular length (relation 1 and 2), the sum of the two indexes in
Eq. (66)must have value 4.4 in the case, when the matrix is
a weakly entangled system, and value 3.4, when the matrix
is a strongly entangled system with macromolecular length
M betweenM∗ andM∗∗. One can think that the further em-
pirical investigation of viscoelasticity of dilute blends could
shed more light on the dynamics of macromolecules in en-
tangles systems.

6. Conclusion

The combined consideration of the two models of
macromolecular dynamics allows us, first of all, to distin-
guish weakly entangled (length of macromoleculesM <

10Me) and strongly entangled (length of macromolecules
M > 10Me) systems. While one needs only in modified
Cerf-Rouse modes to explain effects of viscoelasticity in
weakly entangled systems, the combination of two models
of macromolecular dynamics (unless one has a general-
ized model) ought to be used for consistent explanation of
linear and non-linear effects of viscoelasticity in strongly
entangled linear polymers. To consider viscoelasticity of
strongly entangled system, one has to take into account that
two branches of relaxation times of macromolecules (de-
formational, reptation in this case, and orientational) exist.

The interplay of the two branches determines viscoelastic
behaviour of the system. The conformational (reptation)
relaxation appears to be very important for description the
effects of viscoelasticity of the second and higher orders.

The discussed mechanisms of relaxation processes allow
us to formulate constitutive equations for linear polymers
which, due to the difference of mechanisms of relaxation, ap-
pear to be different for the two types of systems. The consti-
tutive relations derived in our previous paper [[5], Eqs. (48),
(50)–(52)], in which effects of reptation were not considered
at all, can be used to describe viscoelastic flows of weakly
entangled system. The case of strongly entangled systems
is considered in this paper and appears to be the simplest
one. The constitutive relations (38)–(40) contains, apart of
the conventional characteristic Rouse relaxation timeτ∗, the
three mesoscopic parameters introduced in the macromolec-
ular dynamicEq. (4): τ, B andE. Due to requirement of
correspondence of the derived results to empirical situations,
the parameters can be defined as

E = B
π2

χ
, χ 
 0.1,

B = (2χ)−δ, χ < 0.5 (69)

whereδ is an index independent on the length of the macro-
molecules (typical valueδ ≈ 2.4). So, it has appeared that
the dynamics of the system of very long macromolecules
(M 
 10Me) is controlled by the only dynamic parameter
χ which has the direct physical meaning as the ratio of the
square of the double intermediate length (the diameter of ‘the
tube’) to the mean square end-to-end distance of the macro-
molecule〈R2〉 or the inverse number of ‘entanglements’ for
the macromoleculeM/Me

χ = τ

2Bτ∗ ≈
{
(2ξ)2/〈R2〉,
Me/M

(70)

The description of the phenomena might appear to remain
qualitative, so as there are apparently many points, where
the description of the modes can be improved. The meso-
scopic effective-field approach itself is needed in proper mi-
croscopic justification. Apart of empirical justification, the
considered scheme can be justified or rejected, if the prob-
lem of direct derivation a single-chain equation for a system
of interacting macromolecules is solved. The approaches to
the problem[11–14] demonstrate the possibility of reduc-
ing many-chain problem to a single-chain problem and of
evaluating the memory function in the single-chain equation
through the intermolecular correlation functions and struc-
tural dynamic factor of the system of interacting Brownian
particles. Unfortunately, more detailed comparison has ap-
peared to stumble, first of all, over the unjustified simplifica-
tion of the starting point in the cited works. As an initial point
was chosen not a microscopic picture of interacting atoms
or, at least, rigid Kuhn segments of the macromolecules,
but picture of the interacting particles of the coarse-grained
chains. The preliminary switch to coarse-grained chains does
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not allow to calculate the contribution to the memory func-
tion from a short-range interaction between atoms of dif-
ferent subchains of the coarse-grained chains (what makes
up ‘segment carrier liquid with non-zero relaxation time’
in phenomenological theory). There is no evidence that the
contribution to the memory function from interaction of the
internal parts of subchains can be disregarded due either to
the level of the quantity or to value of relaxation times. On
the contrary, the phenomenological approach demonstrates
that the contribution of the direct interaction of Brownian
particles of the coarse-grained chains can be neglected in the
first approximation. Nevertheless, one can believe that the
developed methods[11–14]can be helpful to bring a micro-
scopic justification of a single-macromolecule equation in
the entangled systems. This is a really fundamental problem
in polymer physics.
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